scholarly journals The Number of Subgroup Chains of Finite Nilpotent Groups

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1537 ◽  
Author(s):  
Lingling Han ◽  
Xiuyun Guo

In this paper, we mainly count the number of subgroup chains of a finite nilpotent group. We derive a recursive formula that reduces the counting problem to that of finite p-groups. As applications of our main result, the classification problem of distinct fuzzy subgroups of finite abelian groups is reduced to that of finite abelian p-groups. In particular, an explicit recursive formula for the number of distinct fuzzy subgroups of a finite abelian group whose Sylow subgroups are cyclic groups or elementary abelian groups is given.

2005 ◽  
Vol 71 (3) ◽  
pp. 487-492
Author(s):  
Markku Niemenmaa

If the inner mapping group of a loop is a finite Abelian group, then the loop is centrally nilpotent. We first investigate the structure of those finite Abelian groups which are not isomorphic to inner mapping groups of loops and after this we show that if the inner mapping group of a loop is isomorphic to the direct product of two cyclic groups of the same odd prime power order pn, then our loop is centrally nilpotent of class at most n + 1.


1960 ◽  
Vol 12 ◽  
pp. 447-462 ◽  
Author(s):  
Ruth Rebekka Struik

In this paper G = F/Fn is studied for F a free product of a finite number of cyclic groups, and Fn the normal subgroup generated by commutators of weight n. The case of n = 4 is completely treated (F/F2 is well known; F/F3 is completely treated in (2)); special cases of n > 4 are studied; a partial conjecture is offered in regard to the unsolved cases. For n = 4 a multiplication table and other properties are given.The problem arose from Golovin's work on nilpotent products ((1), (2), (3)) which are of interest because they are generalizations of the free and direct product of groups: all nilpotent groups are factor groups of nilpotent products in the same sense that all groups are factor groups of free products, and all Abelian groups are factor groups of direct products. In particular (as is well known) every finite Abelian group is a direct product of cyclic groups. Hence it becomes of interest to investigate nilpotent products of finite cyclic groups.


2011 ◽  
Vol 12 (01n02) ◽  
pp. 125-135 ◽  
Author(s):  
ABBY GAIL MASK ◽  
JONI SCHNEIDER ◽  
XINGDE JIA

Cayley digraphs of finite abelian groups are often used to model communication networks. Because of their applications, extremal Cayley digraphs have been studied extensively in recent years. Given any positive integers d and k. Let m*(d, k) denote the largest positive integer m such that there exists an m-element finite abelian group Γ and a k-element subset A of Γ such that diam ( Cay (Γ, A)) ≤ d, where diam ( Cay (Γ, A)) denotes the diameter of the Cayley digraph Cay (Γ, A) of Γ generated by A. Similarly, let m(d, k) denote the largest positive integer m such that there exists a k-element set A of integers with diam (ℤm, A)) ≤ d. In this paper, we prove, among other results, that [Formula: see text] for all d ≥ 1 and k ≥ 1. This means that the finite abelian group whose Cayley digraph is optimal with respect to its diameter and degree can be a cyclic group.


2019 ◽  
Vol 150 (4) ◽  
pp. 1937-1964 ◽  
Author(s):  
Hua-Lin Huang ◽  
Zheyan Wan ◽  
Yu Ye

AbstractWe provide explicit and unified formulas for the cocycles of all degrees on the normalized bar resolutions of finite abelian groups. This is achieved by constructing a chain map from the normalized bar resolution to a Koszul-like resolution for any given finite abelian group. With a help of the obtained cocycle formulas, we determine all the braided linear Gr-categories and compute the Dijkgraaf–Witten Invariants of the n-torus for all n.


2015 ◽  
Vol 92 (1) ◽  
pp. 24-31
Author(s):  
ZHENHUA QU

Let$G$be a finite abelian group and$A\subseteq G$. For$n\in G$, denote by$r_{A}(n)$the number of ordered pairs$(a_{1},a_{2})\in A^{2}$such that$a_{1}+a_{2}=n$. Among other things, we prove that for any odd number$t\geq 3$, it is not possible to partition$G$into$t$disjoint sets$A_{1},A_{2},\dots ,A_{t}$with$r_{A_{1}}=r_{A_{2}}=\cdots =r_{A_{t}}$.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Zhao Jinxing ◽  
Nan Jizhu

We study the dynamics of endomorphisms on a finite abelian group. We obtain the automorphism group for these dynamical systems. We also give criteria and algorithms to determine whether it is a fixed point system.


2002 ◽  
Vol 72 (2) ◽  
pp. 173-180 ◽  
Author(s):  
R. Quackenbush ◽  
C. S. Szabó

AbstractIt is shown that no finite group containing a non-abelian nilpotent subgroup is dualizable. This is in contrast to the known result that every finite abelian group is dualizable (as part of the Pontryagin duality for all abelian groups) and to the result of the authors in a companion article that every finite group with cyclic Sylow subgroups is dualizable.


10.37236/899 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Jujuan Zhuang

Let $G=C_{n_1}\oplus \ldots \oplus C_{n_r}$ be a finite abelian group with $r=1$ or $1 < n_1|\ldots|n_r$, and let $S=(a_1,\ldots,a_t)$ be a sequence of elements in $G$. We say $S$ is an unextendible sequence if $S$ is a zero-sum free sequence and for any element $g\in G$, the sequence $Sg$ is not zero-sum free any longer. Let $L(G)=\lceil \log_2{n_1}\rceil+\ldots+\lceil \log_2{n_r}\rceil$ and $d^*(G)=\sum_{i=1}^r(n_i-1)$, in this paper we prove, among other results, that the minimal length of an unextendible sequence in $G$ is not bigger than $L(G)$, and for any integer $k$, where $L(G)\leq k \leq d^*(G)$, there exists at least one unextendible sequence of length $k$.


1980 ◽  
Vol 77 ◽  
pp. 89-98 ◽  
Author(s):  
Keiichi Watanabe

Let G be a finite subgroup of GL(n, C) (C is the field of complex numbers). Then G acts naturally on the polynomial ring S = C[X1, …, Xn]. We consider the followingProblem. When is the invariant subring SG a complete intersection?In this paper, we treat the case where G is a finite Abelian group. We can solve the problem completely. The result is stated in Theorem 2.1.


2009 ◽  
Vol 05 (06) ◽  
pp. 953-971 ◽  
Author(s):  
BÉLA BAJNOK

A subset A of a given finite abelian group G is called (k,l)-sum-free if the sum of k (not necessarily distinct) elements of A does not equal the sum of l (not necessarily distinct) elements of A. We are interested in finding the maximum size λk,l(G) of a (k,l)-sum-free subset in G. A (2,1)-sum-free set is simply called a sum-free set. The maximum size of a sum-free set in the cyclic group ℤn was found almost 40 years ago by Diamanda and Yap; the general case for arbitrary finite abelian groups was recently settled by Green and Ruzsa. Here we find the value of λ3,1(ℤn). More generally, a recent paper by Hamidoune and Plagne examines (k,l)-sum-free sets in G when k - l and the order of G are relatively prime; we extend their results to see what happens without this assumption.


Sign in / Sign up

Export Citation Format

Share Document