scholarly journals Effect of a New Chemical Formula on Postharvest Decay Incidence in Citrus Fruit

Author(s):  
Nehal El-Mougy ◽  
Mokhtar Abdel-Kader ◽  
Mohamed Aly
Plant Disease ◽  
1998 ◽  
Vol 82 (6) ◽  
pp. 689-693 ◽  
Author(s):  
P. L. Sholberg

Vapors of acetic (1.9 or 2.5 μl/liter), formic (1.2 μl/liter), and propionic (2.5 μl/liter) acids were tested for postharvest decay control on 8 cherry, 14 pome, and 3 citrus fruit cultivars. Surfacesterilized fruit were inoculated with known fungal pathogens by drying 20-μl drops of spore suspension on marked locations on each fruit, placing at 10°C to equilibrate for approximately 24 h, and fumigating by evaporating the above acids in 12.7-liter airtight fumigation chambers for 30 min. Immediately after fumigation, the fruit were removed, aerated, aseptically injured, and placed at 20°C until decay occurred. All three fumigants controlled Monilinia fructicola, Penicillium expansum, and Rhizopus stolonifer on cherry. Formic acid increased fruit pitting on six of eight cultivars and was the only organic acid to increase blackening of cherry stems when compared to the control. Decay of pome fruit caused by P. expansum was reduced from 98% to 16, 4, or 8% by acetic, formic, and propionic acids, respectively, without injury to the fruit. Decay of citrus fruit by P. digitatum was reduced from 86 to 11% by all three acids, although browning of the fruit peel was observed on grapefruit and oranges fumigated with formic acid.


2004 ◽  
Vol 14 (1) ◽  
pp. 58-62 ◽  
Author(s):  
Mark A. Ritenour ◽  
Robert R. Pelosi ◽  
Michael S. Burton ◽  
Eddie W. Stover ◽  
Huating Dou ◽  
...  

Studies were conducted between November 1999 and April 2003 to evaluate the effectiveness of compounds applied preharvest for reducing postharvest decay on many types of fresh citrus (Citrus spp.) fruit. Commercially mature fruit were harvested two different times after the compounds were applied, degreened when necessary, washed, waxed (without fungicide), and then stored at 50 °F (10.0 °C) with 90% relative humidity. Compared to control (unsprayed) fruit, preharvest application of benomyl or thiophanate-methyl resulted in significantly (P < 0.05) less decay of citrus fruit after storage in nine out of ten experiments, often reducing decay by about half. In one experiment, pyraclostrobin and phosphorous acid also significantly decreased total decay by 29% and 36%, respectively, after storage compared to the control. Only benomyl and thiophanate-methyl significantly reduced stem-end rot (SER; primarily Diplodia natalensis or Phomopsis citri) after storage, with an average of 65% less decay compared to the control. Though benomyl significantly reduced anthracnose (Colletotrichum gloeosporioides) in two of four tests with substantial (>20%) infection and phosphorous acid significantly reduced it once, thiophanate-methyl did not significantly reduce the incidence of anthracnose postharvest. The data suggests that preharvest application of thiophanate-methyl may reduce postharvest SER and total decay similar to preharvest benomyl treatments.


Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 646 ◽  
Author(s):  
Manish Kumar Patel ◽  
Dalia Maurer ◽  
Oleg Feygenberg ◽  
Amos Ovadia ◽  
Yigal Elad ◽  
...  

More than 40% of harvested fruit is lost, largely due to decay. In parallel, restrictions on postharvest fungicides call for eco-friendly alternatives. Fruit’s natural resistance depends mainly on flavonoids and anthocyanins—which have antioxidant and antifungal activity—synthesized from the phenylpropanoid pathway with phenylalanine as a precursor. We hypothesized that phenylalanine could induce fruit’s natural defense response and tolerance to fungal pathogens. The postharvest application of phenylalanine to mango and avocado fruit reduced anthracnose and stem-end rot caused by Colletotrichum gloeosporioides and Lasiodiplodia theobromae, respectively. The postharvest application of phenylalanine to citrus fruit reduced green mold caused by Penicillium digitatum. The optimal phenylalanine concentrations for postharvest application were 6 mM for citrus fruits and 8 mM for mangoes and avocadoes. The preharvest application of phenylalanine to strawberries, mangoes, and citrus fruits also reduced postharvest decay. Interestingly, citrus fruit resistance to P. digitatum inoculated immediately after phenylalanine application was not improved, whereas inoculation performed 2 days after phenylalanine treatment induced the defense response. Five hours after the treatment, no phenylalanine residue was detected on/in the fruit, probably due to rapid phenylalanine metabolism. Additionally, in vitro testing showed no inhibitory effect of phenylalanine on conidial germination. Altogether, we characterized a new inducer of the fruit defense response—phenylalanine. Preharvest or postharvest application to fruit led to the inhibition of fungal pathogen-induced postharvest decay, suggesting that the application of phenylalanine could become an eco-friendly and healthy alternative to fungicides.


2000 ◽  
Vol 18 (2) ◽  
pp. 151-157 ◽  
Author(s):  
Ron Porat ◽  
Avinoam Daus ◽  
Batia Weiss ◽  
Lea Cohen ◽  
Elazar Fallik ◽  
...  

Agriculture ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 330 ◽  
Author(s):  
Chuying Chen ◽  
Chunpeng Wan ◽  
Juanhua Guo ◽  
Jinyin Chen

The Xinyu tangerine (Citrus reticulata Blanco) is a non-climacteric fruit that is widely cultivated and consumed in China but highly susceptible to fungal infections. Antagonistic microorganisms can control postharvest diseases and extend the storage life of citrus fruits. However, little work has been done to investigate the effects of applying Paenibacillus brasilensis YS-1 by immersion to enhance the cold storability of Xinyu tangerines. Fruits were soaked with P. brasilensis YS-1 fermented filtrates for 10 min and in sterile water as the control. The decay incidence, weight loss, nutrient content, respiration rate, malondialdehyde (MDA) content, and defensive enzymes activities in citrus fruit were measured during cold storage at 5 ± 0.5 °C. The results showed that P. brasilensis YS-1 treatment significantly reduced postharvest decay and effectively maintained the nutritional quality compared to the control under cold storage. The weight loss, respiration rate, and MDA content were lower in P. brasilensis YS-1-treated fruits than the control fruits, indicating that P. brasilensis YS-1 treatment increased the activities of superoxide dismutase (SOD), peroxidase (POD), polyphenol oxidase (PPO), and phenylalnine ammonia-lyase (PAL). According to the results, a postharvest application of P. brasilensis YS-1 can control the postharvest decay and maintain fruit quality, as well as increase the defensive enzyme activity, so as to achieve the purpose of retarding postharvest senescence in citrus fruit.


2013 ◽  
Vol 45 ◽  
pp. 63-70 ◽  
Author(s):  
Nakarin Suwannarach ◽  
Jaturong Kumla ◽  
Boonsom Bussaban ◽  
Wipornpan Nuangmek ◽  
Kenji Matsui ◽  
...  

Plant Disease ◽  
2013 ◽  
Vol 97 (2) ◽  
pp. 201-212 ◽  
Author(s):  
L. Cerioni ◽  
V. A. Rapisarda ◽  
J. Doctor ◽  
S. Fikkert ◽  
T. Ruiz ◽  
...  

Potassium phosphite (KP) concentrations that inhibited the germination of 50% of Penicillium digitatum conidia were 229, 334, 360, 469, 498, or 580 mg/liter at pH 3, 4, 5, 6, 7, or 8, respectively. Increasing phosphate content in media reduced phosphite toxicity. To control green or blue mold, fruit were inoculated with P. digitatum or P. italicum, then immersed 24 h later in KP, calcium phosphite (CaP), sodium carbonate, sodium bicarbonate, or potassium sorbate for 1 min at 20 g/liter for each at 25 or 50°C. Mold incidence was lowest after potassium sorbate, CaP, or KP treatments at 50°C. CaP was often more effective than KP but left a white residue on fruit. KP was significantly more effective when fruit were stored at 10 or 15°C after treatment compared with 20°C. Acceptable levels of control were achieved only when KP was used in heated solutions or with fungicides. KP was compatible with imazalil (IMZ) and other fungicides and improved their effectiveness. KP increased thiabendazole or IMZ residues slightly. Phosphite residues did not change during storage for 3 weeks, except they declined when KP was applied with IMZ. KP caused no visible injuries or alteration in the rate of color change of citrus fruit in air or ethylene at 5 μl/liter.


Sign in / Sign up

Export Citation Format

Share Document