scholarly journals Application of Linear Discriminant Analysis in Dimensionality Reduction for Hand Motion Classification

2012 ◽  
Vol 12 (3) ◽  
Author(s):  
A. Phinyomark ◽  
H. Hu ◽  
P. Phukpattaranont ◽  
C. Limsakul
2022 ◽  
Author(s):  
Meelad Amouzgar ◽  
David R Glass ◽  
Reema Baskar ◽  
Inna Averbukh ◽  
Samuel C Kimmey ◽  
...  

Single-cell technologies generate large, high-dimensional datasets encompassing a diversity of omics. Dimensionality reduction enables visualization of data by representing cells in two-dimensional plots that capture the structure and heterogeneity of the original dataset. Visualizations contribute to human understanding of data and are useful for guiding both quantitative and qualitative analysis of cellular relationships. Existing algorithms are typically unsupervised, utilizing only measured features to generate manifolds, disregarding known biological labels such as cell type or experimental timepoint. Here, we repurpose the classification algorithm, linear discriminant analysis (LDA), for supervised dimensionality reduction of single-cell data. LDA identifies linear combinations of predictors that optimally separate a priori classes, enabling users to tailor visualizations to separate specific aspects of cellular heterogeneity. We implement feature selection by hybrid subset selection (HSS) and demonstrate that this flexible, computationally-efficient approach generates non-stochastic, interpretable axes amenable to diverse biological processes, such as differentiation over time and cell cycle. We benchmark HSS-LDA against several popular dimensionality reduction algorithms and illustrate its utility and versatility for exploration of single-cell mass cytometry, transcriptomics and chromatin accessibility data.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2924
Author(s):  
Yonggi Hong ◽  
Yunji Yang ◽  
Jaehyun Park

In this paper, we propose a cooperative linear discriminant analysis (LDA)-based motion classification algorithm for distributed micro-Doppler (MD) radars which are connected to a data fusion center through the limited backhaul. Due to the limited backhaul, each radar cannot report the high-dimensional data of a multi-aspect angle MD signature to the fusion center. Instead, at each radar, the dimensionality of the MD signature is reduced by using the LDA algorithm and the dimensionally-reduced MD signature can be collected at the data fusion center. To further reduce the burden of backhaul, we also propose the softmax processing method in which the distances of the sensed MD signatures from the centers of clusters for all motion candidates are computed at each radar. The output of the softmax process at each radar is quantized through the pyramid vector quantization with a finite number of bits and is reported to the data fusion center. To improve the classification performance at the fusion center, the channel resources of the backhaul are adaptively allocated based on the classification separability at each radar. The proposed classification performance was assessed with synthetic simulation data as well as experimental data measured through the USRP-based MD radar.


Sign in / Sign up

Export Citation Format

Share Document