Hydraulic conductivity and index of soil physical quality of a forest haplic arenosol

2009 ◽  
Vol 64 (4) ◽  
Author(s):  
Maja Bryk
Soil Research ◽  
2015 ◽  
Vol 53 (3) ◽  
pp. 274 ◽  
Author(s):  
P. A. Swanepoel ◽  
C. C. du Preez ◽  
P. R. Botha ◽  
H. A. Snyman ◽  
J. Habig

Soil quality of pastures changes through time because of management practices. Excessive soil disturbance usually leads to the decline in soil quality, and this has resulted in concerns about kikuyu (Pennisetum clandestinum)–ryegrass (Lolium spp.) pasture systems in the southern Cape region of South Africa. This study aimed to understand the effects of tillage on soil quality. The soil management assessment framework (SMAF) and the locally developed soil quality index for pastures (SQIP) were used to assess five tillage systems and were evaluated at a scale inclusive of variation in topography, pedogenic characteristics and local anthropogenic influences. Along with assessment of overall soil quality, the quality of the physical, chemical and biological components of soil were considered individually. Soil physical quality was largely a function of inherent pedogenic characteristics but tillage affected physical quality adversely. Elevated levels of certain nutrients may be warning signs to soil chemical degradation; however, tillage practice did not affect soil chemical quality. Soil disturbance and the use of herbicides to establish annual pastures has lowered soil biological quality. The SQIP was a more suitable tool than SMAF for assessing soil quality of high-input, dairy-pasture systems. SQIP could facilitate adaptive management by land managers, environmentalists, extension officers and policy makers to assess soil quality and enhance understanding of processes affecting soil quality.


Soil Research ◽  
2012 ◽  
Vol 50 (6) ◽  
pp. 455 ◽  
Author(s):  
V. P. Pereira ◽  
M. E. Ortiz-Escobar ◽  
G. C. Rocha ◽  
R. N. Assis Junior ◽  
T. S. Oliveira

Concern about soil physical quality has grown in recent years, particularly in view of serious problems caused by intensive soil use. We hypothesised that improper soil management in irrigated areas damages the structure of sensitive soils in some regions in North-eastern Brazil. The aim of the study was to evaluate the physical quality of irrigated soils planted with annual and perennial crops, compared with soils under natural vegetation in Ceará State, Brazil. Measurements were made of least limiting water range (LLWR), the S index, and relative density. Undisturbed soil samples were collected at two depths (5–10 and 20–25 cm) in four cultivated areas (banana, guava, pasture, and maize/bean in succession) and two natural vegetation areas (NV1, NV2) adjacent to the cultivated areas. All sites were in the Jaguaribe-Apodi Irrigated District, Limoeiro do Norte, Ceará, Brazil. The LLWR was determined using the water retention curve, soil resistance to penetration, and soil bulk density, which are parameters needed to obtain the upper and lower limits of LLWR. The S index was obtained from the water retention curve. The relative density was obtained from the relationship between bulk density and maximum density obtained from the Proctor test. The S index varied as a function of soil management. The variation in LLWR differed between the studied areas as a function of soil bulk density. The relative densities for NV1 and NV2 were lower than for cultivated areas, showing that intensive soil use has caused compaction. The studied parameters seem to be good indicators of soil physical quality, and it was noticed that soils under cultivation suffer an alteration of their structure relative to soils under natural vegetation.


2018 ◽  
Vol 10 (7) ◽  
pp. 46
Author(s):  
Diego Dos Santos Pereira ◽  
Rafael Montanari ◽  
Christtiane Fernandes Oliveira ◽  
Jean Carlos de Almeida Ramos ◽  
Alan Rodrigo Panosso ◽  
...  

The soil physical quality is a way of evaluating the current condition of forest plantations that is growing in the southeast region of Mato Grosso do Sul State. In this sense, this work aimed to evaluate the impact of the forest plantations on the physical quality of an Oxisol (Haplic Acrustox) in Cerrado. The experiment was conducted in the Experimental area of the Teaching and Research Farm, of the Engineering college of Ilha Solteira (UNESP), located in the city of Selvíria-MS, situated in the conditions of the Brazilian Cerrado. The soil samples were collected at depths of 0.00-0.10; 0.10-0.20; 0.20-0.30 and 0.30-0.40 m in three areas cultivated for 30 years: area (1) Pine forest (Pinus caribaea var. hondurensis); (2) Eucalyptus forest (Eucalyptus camaldulensis); (3) Reforested ciliary forest, being used a completely randomized design, with 25 replications and 3 treatments. The analyzed attributes of the soil was: macroporosity (Ma), microporosity (Mi), total porosity (TP), bulk density (BD), real particle (RP), soil resistance to penetration (PR), gravimetric moisture (GM), volumetric moisture (VM) and sand, silt and clay contents. The three evaluated areas presented macroporosity below the critical limit (0.100 m³ m-³), thereby impairing the root development. The three evaluated areas affected the physical quality of the soil. Being the physical attributes that most influenced in the reduction of the soil physical quality was the bulk density, total porosity, microporosity, macroporosity and soil resistance to penetration.


2021 ◽  
Author(s):  
Simone Di Prima ◽  
Vittoria Giannini ◽  
Ludmila Ribeiro Roder ◽  
Ryan D. Stewart ◽  
Majdi R. Abou Najm ◽  
...  

<p>Time-lapse ground penetrating radar (GPR) surveys in conjunction with automated single-ring infiltration experiments can be used for non-invasive monitoring of the spatial distribution of infiltrated water and for generating 3D representations of the wetted zone. In this study we developed and tested a protocol to quantify and visualize water distribution fluxes under unsaturated and saturated conditions into layered soils. We carried out a gridded GPR survey on a 0.3-m thick sandy clay loam layer underlain by a restrictive limestone layer at the Ottava experimental station of the University of Sassari (Sardinia, IT). We firstly established a survey grid (1 m × 1 m), consisting of six horizontal and six vertical parallel survey lines with 0.2 m intervals between them. The field survey then consisted of six steps, including <strong>i)</strong> a first GPR survey, <strong>ii)</strong> a tension infiltration experiment conducted within the grid and aimed at activating only the soil matrix, <strong>iii)</strong> a second GPR survey aimed at highlighting the amplitude fluctuations between repeated GPR radargrams of the first and second surveys, due to the infiltrated water moving within the matrix flow region, <strong>iv)</strong> a single-ring infiltration experiment of the Beerkan type carried out within the grid on the same infiltration surface using a solution of brilliant blue dye (E133) and aimed to activate the whole pore network, <strong>v)</strong> a third GPR survey aimed to highlight the amplitude fluctuations between repeated GPR radargrams of the first and third surveys, due to the infiltrated water moving within the whole pore network (both matrix and fast-flow regions), and <strong>vi)</strong> the excavation of the soil to expose the wetted region. The shapes of the 3D diagrams of the wetted zones facilitated the interpretation of the infiltrometer data, allowing us to resolve water infiltration into the layered system. Finally, we used the infiltrometer data in conjunction with the Beerkan estimation of soil transfer parameter (BEST) method to determine the following capacitive indicators of soil physical quality of the upper soil layer: air capacity <em>AC</em> (m<sup>3</sup> m<sup>–3</sup>), plant-available water capacity <em>PAWC</em> (m<sup>3</sup> m<sup>–3</sup>), relative field capacity <em>RFC</em> (–), and soil macroporosity <em>p<sub>MAC</sub></em> (m<sup>3</sup> m<sup>–3</sup>). Results showed that the investigated soil was characterized by high soil aeration and macroporosity (i.e., <em>AC</em> and <em>p<sub>MAC</sub></em>) along with low values for indicators associated with microporosity (i.e., <em>PAWC</em> and <em>RFC</em>). These findings suggest that the upper soil layer facilitates root proliferation and quickly drains excess water towards the underlying limestone layer, and, on the contrary, has limited ability to store and provide water to plant roots. In addition, the 3D diagram allowed the detection of non-uniform downward water movement through the restrictive limestone layer. The detected difference between the two layers in terms of hydraulic conductivity suggests that surface ponding and overland flow generation occurs via a saturation-excess mechanism. Indeed, percolating water may accumulate above the restrictive limestone layer and form a shallow perched water table that, in case of extreme rainfall events, could rise causing the complete saturation of the soil profile.</p>


2017 ◽  
Vol 56 (1) ◽  
pp. 45-53 ◽  
Author(s):  
O. Fenton ◽  
S. Vero ◽  
R.P.O. Schulte ◽  
L. O’Sullivan ◽  
G. Bondi ◽  
...  

AbstractHistorically, due to a lack of measured soil physical data, the quality of Irish soils was relatively unknown. Herein, we investigate the physical quality of the national representative profiles of Co. Waterford. To do this, the soil physical quality (SPQ) S-Index, as described by Dexter (2004a,b,c) using the S-theory (which seeks the inflection point of a soil water retention curve [SWRC]), is used. This can be determined using simple (S-Indirect) or complex (S-Direct) soil physical data streams. Both are achievable using existing data for the County Waterford profiles, but until now, the suitability of this S-Index for Irish soils has never been tested. Indirect-S provides a generic characterisation of SPQ for a particular soil horizon, using simplified and modelled information (e.g. texture and SWRC derived from pedo-transfer functions), whereas Direct-S provides more complex site-specific information (e.g. texture and SWRC measured in the laboratory), which relates to properties measured for that exact soil horizon. Results showed a significant correlation between S-Indirect (Si) and S-Direct (Sd). Therefore, the S-Index can be used in Irish soils and presents opportunities for the use of Si at the national scale. Outlier horizons contained >6% organic carbon (OC) and bulk density (Bd) values <1 g/cm3 and were not suitable for Si estimation. In addition, the S-Index did not perform well on excessively drained soils. Overall correlations of Si. with Bd and of Si. with OC% for the dataset were detected. Future work should extend this approach to the national scale dataset in the Irish Soil Information System.


2013 ◽  
Vol 37 (6) ◽  
pp. 1522-1534 ◽  
Author(s):  
Karina de Vares Rossetti ◽  
José Frederico Centurion ◽  
Eurico Lucas de Sousa Neto

Management systems may lead to a loss of soil physical quality as a result of removal of the plant cover and excessive agricultural mechanization. The hypothesis of this study was that the soil aggregate stability, bulk density, macro- and microporosity, and the S index and saturated hydraulic conductivity may be used as indicators of the soil physical quality. The aim was to study the effects of different periods and managements on the physical attributes of a medium-textured Red Oxisol under soybean and corn for two growing seasons, and determine which layers are most susceptible to variations. A completely randomized experimental design was used with split plots (five treatments and four layers), with four replications. The treatments in 2008/09 consisted of: five years of no-tillage (NTS5), seven years of no-tillage (NTS7), nine years of no-tillage (NTS9), conventional tillage (CTS) and an adjacent area of native forest (NF). The treatments were extended for another year, identified in 2009/10 as: NTS6, NTS8, NTS10, CTS and NF. The soil layers 0-0.05, 0.05-0.10, 0.10-0.20 and 0.20-0.30 m were sampled. The highest S index values were observed in the treatment CTS in the 0-0.05 m layer (0.106) and the 0.05-0.10 m layer (0.099) in 2008/09, and in the 0-0.05 m layer (0.066) in 2009/10. This fact may be associated with soil turnover, resulting in high macroporosity in this treatment. In contrast, in the NTS, limiting macroporosity values were observed in some layers (below 0.10 m³ m-3). Highest aggregate stability as well as the highest saturated hydraulic conductivity (Kθ) values were observed in NF in relation to the other treatments. In 2009/10, the Kθ in NF differed only from NTS10. This study showed that the use of the S index alone cannot be recommended as an absolute indicator of the soil physical quality, even at values greater than 0.035.


2015 ◽  
Vol 72 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Pablo Javier Ghiberto ◽  
Silvia Imhoff ◽  
Paulo Leonel Libardi ◽  
Álvaro Pires da Silva ◽  
Cassio Antonio Tormena ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document