Assessment of tillage effects on soil quality of pastures in South Africa with indexing methods

Soil Research ◽  
2015 ◽  
Vol 53 (3) ◽  
pp. 274 ◽  
Author(s):  
P. A. Swanepoel ◽  
C. C. du Preez ◽  
P. R. Botha ◽  
H. A. Snyman ◽  
J. Habig

Soil quality of pastures changes through time because of management practices. Excessive soil disturbance usually leads to the decline in soil quality, and this has resulted in concerns about kikuyu (Pennisetum clandestinum)–ryegrass (Lolium spp.) pasture systems in the southern Cape region of South Africa. This study aimed to understand the effects of tillage on soil quality. The soil management assessment framework (SMAF) and the locally developed soil quality index for pastures (SQIP) were used to assess five tillage systems and were evaluated at a scale inclusive of variation in topography, pedogenic characteristics and local anthropogenic influences. Along with assessment of overall soil quality, the quality of the physical, chemical and biological components of soil were considered individually. Soil physical quality was largely a function of inherent pedogenic characteristics but tillage affected physical quality adversely. Elevated levels of certain nutrients may be warning signs to soil chemical degradation; however, tillage practice did not affect soil chemical quality. Soil disturbance and the use of herbicides to establish annual pastures has lowered soil biological quality. The SQIP was a more suitable tool than SMAF for assessing soil quality of high-input, dairy-pasture systems. SQIP could facilitate adaptive management by land managers, environmentalists, extension officers and policy makers to assess soil quality and enhance understanding of processes affecting soil quality.

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261638
Author(s):  
Yu Zhou ◽  
Yingcheng Fan ◽  
Guang Lu ◽  
Anyong Zhang ◽  
Ting Zhao ◽  
...  

Soil quality is the basis for the development of sustainable agriculture and may be used for evaluating the sustainability of soil management practices. Soil quality status and integrated soil quality index (SQI) in sampled 97 farmlands distributed in 7 barley agro-ecological areas of China were analyzed by using 13 soil chemical parameters. The results showed six principal components totally explained 72% variability for the 13 parameters and identified 9 parameters (includes pH, NH4+-N, NO3--N, available P, available K, exchangeable Mg, DTPA-Fe, DTPA-Cu and Cl-) with high factor loading values as the minimum data set (MDS) for assessing soil quality. Average soil quality of all farmlands is moderate (SQI = 0.62). The SQI of barley farmlands in 7 agro-ecological areas showed the following order: Inner Mongolia Plateau (0.75 ± 0.02) > Yunnan-Kweichow Plateau (0.72 ± 0.06) > Qinghai-Tibet Plateau (0.63 ± 0.08) > Yangtze Plain (0.62 ± 0.10) > Huanghuai Region (0.58 ± 0.09) > Northeast China Plain (0.56 ± 0.07) > Xinjiang Province (0.54 ± 0.07). Total 29 out of 97 farmlands in 7 areas have low SQI level (< 0.55). Hence, these farmlands require urgent attention for soil quality improvement through modification of the soil parameters in the MDS.


2010 ◽  
Vol 56 (No. 7) ◽  
pp. 348-356 ◽  
Author(s):  
D.W. Gui ◽  
J.Q. Lei ◽  
F.J. Zeng

Oasification and desertification are basic geographical processes in arid areas, and both change the soil properties and quality. Recently, oasification has been obvious in the southern rim of the Tarim Basin of Xinjiang, China, and agriculture is the main land-use type. There has been little research on oasification involving farmland of different management types in extremely arid regions. In 2004, four experimental fields were established in the Cele Oasis, representing four typical land-use types of local farmers' tillage practices during oasification. Three experimental fields were situated in the desert-oasis ecotone: newly cultivated land (NEF), a field with normal manure input (NMF), and a field with high manure input (HMF); there was also another field in the oasis interior (OIF), to allow analysis of the management effects on soil properties and soil quality of farmlands. Additionally, the soil from an uncultivated control plot was analyzed for comparison. Both a Soil Quality Index based on soil properties and a Sustainable Yield Index based on yearly yield were used to assess the soil quality of the different farmlands. There were significant differences in seven soil indicators, including soil particle size distribution and soil organic matter, between the four locations. NEF had the lowest and OIF the highest values in all assessments among the five experiment plots. Fertilization of NMF and HMF had positive effects on soil properties and soil quality; however, the sustainable productivity of these farmlands was low. The results should be beneficial for refining agricultural management practices and improving sustainable land use in the oasification process.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 195 ◽  
Author(s):  
Mirko Castellini ◽  
Anna Maria Stellacci ◽  
Danilo Sisto ◽  
Massimo Iovino

The multi-height (low, L = 3 cm; intermediate, M = 100 cm; high, H = 200 cm) Beerkan run methodology was applied on both a minimum tilled (MT) (i.e., up to a depth of 30 cm) and a no-tilled (NT) bare loam soil, and the soil water retention curve was estimated by the BEST-steady algorithm. Three indicators of soil physical quality (SPQ), i.e., macroporosity (Pmac), air capacity (AC) and relative field capacity (RFC) were calculated to assess the impact of water pouring height under alternative soil management practices. Results showed that, compared to the reference low run, M and H runs affected both the estimated soil water retention curves and derived SPQ indicators. Generally, M–H runs significantly reduced the mean values of Pmac and AC and increased RFC for both MT and NT soil management practices. According to the guidelines for assessment of SPQ, the M and H runs: (i) worsened Pmac classification of both MT and NT soils; (ii) did not worsen AC classification, regardless of soil management parameters; (iii) worsened RFC classification of only NT soil, as a consequence of insufficient soil aeration. For both soil management techniques, a strong negative correlation was found between the Pmac and AC values and the gravitational potential energy, Ep, of the water used for the infiltration runs. A positive correlation was detected between RFC and Ep. The relationships were plausible from a soil physics point of view. NT soil has proven to be more resilient than MT. This study contributes toward testing simple and robust methods capable of quantifying soil degradation effects, due to intense rainfall events, under different soil management practices in the Mediterranean environment.


SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 173-185 ◽  
Author(s):  
R. Zornoza ◽  
J. A. Acosta ◽  
F. Bastida ◽  
S. G. Domínguez ◽  
D. M. Toledo ◽  
...  

Abstract. Soil quality (SQ) assessment has long been a challenging issue, since soils present high variability in properties and functions. This paper aims to increase the understanding of SQ through the review of SQ assessments in different scenarios providing evidence about the interrelationship between SQ, land use and human health. There is a general consensus that there is a need to develop methods to assess and monitor SQ for assuring sustainable land use with no prejudicial effects on human health. This review points out the importance of adopting indicators of different nature (physical, chemical and biological) to achieve a holistic image of SQ. Most authors use single indicators to assess SQ and its relationship with land uses – soil organic carbon and pH being the most used indicators. The use of nitrogen and nutrient content has resulted sensitive for agricultural and forest systems, together with physical properties such as texture, bulk density, available water and aggregate stability. These physical indicators have also been widely used to assess SQ after land use changes. The use of biological indicators is less generalized, with microbial biomass and enzyme activities being the most selected indicators. Although most authors assess SQ using independent indicators, it is preferable to combine some of them into models to create a soil quality index (SQI), since it provides integrated information about soil processes and functioning. The majority of revised articles used the same methodology to establish an SQI, based on scoring and weighting of different soil indicators, selected by means of multivariate analyses. The use of multiple linear regressions has been successfully used for forest land use. Urban soil quality has been poorly assessed, with a lack of adoption of SQIs. In addition, SQ assessments where human health indicators or exposure pathways are incorporated are practically inexistent. Thus, further efforts should be carried out to establish new methodologies to assess soil quality not only in terms of sustainability, productivity and ecosystem quality but also human health. Additionally, new challenges arise with the use and integration of stable isotopic, genomic, proteomic and spectroscopic data into SQIs.


2014 ◽  
Vol 38 (2) ◽  
pp. 444-453 ◽  
Author(s):  
Thalita Campos Oliveira ◽  
Laura Fernanda Simões da Silva ◽  
Miguel Cooper

The concept of soil quality is currently the subject of great discussion due to the interaction of soil with the environment (soil-plant-atmosphere) and practices of human intervention. However, concepts of soil quality relate quality to agricultural productivity, but assessment of soil quality in an agronomic context may be different from its assessment in natural areas. The aim of this study was to assess physical quality indices, the S index, soil aeration capacity (ACt/Pt), and water storage capacity (FC/Pt) of the soil from a permanent plot in the Caetetus Ecological Reserve (Galia, São Paulo, Brazil) under a seasonal semideciduous forest and compare them with the reference values for soil physical quality found in the literature. Water retention curves were used for that purpose. The S values found were higher than the proposed limit for soil physical quality (0.035). The A and E horizons showed the highest values because their sandy texture leads to a high slope of the water retention curve. The B horizons showed the lowest S values because their natural density leads to a lower slope of the water retention curve. The values found for ACt/Pt and FC/Pt were higher and lower than the idealized limits. The values obtained from these indices under natural vegetation can provide reference values for soils with similar properties that undergo changes due to anthropic activities. All the indices evaluated were effective in differentiating the effects of soil horizons in the natural hydro-physical functioning of the soils under study.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3156
Author(s):  
Felipe Bonini da Luz ◽  
Martha Lustosa Carvalho ◽  
Daniel Aquino de Borba ◽  
Bruna Emanuele Schiebelbein ◽  
Renato Paiva de Lima ◽  
...  

Brazil is the world’s largest sugarcane producer with projections for expanding the current area by 30% in the coming years, mainly in areas previously occupied by pastures. We assess soil water changes induced by land-use change (LUC) for sugarcane expansion in the central-south region of Brazil. For that purpose, soil samples were collected in a typical LUC sequence (native vegetation–pasture–sugarcane) in two contrasting soil textures (i.e., sandy and clayey). Soil hydro-physical properties such as pores size distribution, bulk density, soil water content, water tension, and drainage time at field capacity, plant-available water, and S-index were analyzed. Our data showed that long-term LUC from native vegetation to extensive pasture induced severe degradation in soil physical quality and soil water dynamics. However, conventional tillage used during conversion from pasture to sugarcane did not cause additional degradation on soil structure and soil water dynamics. Over time, sugarcane cultivation slightly impaired soil water and physical conditions, but only in the 10–20 cm layer in both soils. Therefore, we highlight that sustainable management practices to enhance soil physical quality and water dynamics in sugarcane fields are needed to prevent limiting conditions to plant growth and contribute to delivering other ecosystem services.


2019 ◽  
Vol 14 (1) ◽  
pp. 20
Author(s):  
Supriyadi Supriyadi ◽  
Widyatmani Sih Dewi ◽  
Desmiasari Nugrahani ◽  
Adila Azza Rahmah ◽  
Haryuni Haryuni ◽  
...  

Increased rice needs in an extensive use of paddy fields in the Jatipurno, Wonogiri. Managing rice fields can reduce soil quality. Proper management can improve soil quality, Jatipurno has management such as organic, semi-organic and inorganic paddy field management which have a real effect on soil quality. Assessment of soil quality is measured by physical, chemical and biological indicators, where each factor has a different effect. The chemical indicators are often used as the main indicators for determining soil quality, whereas every parameter has the opportunity to be the main indicator. So, biological indicators can play indicators. The main indicators are obtained from the correlation test (p-values &le; 0,05 - &lt; 0,01) and Principal Component Analysis with high value, eigenvalues &gt; 1 have the potential to be used as Minimum Data Sets. The result is biological can be able to use as the Minimum Data Set such as microbial carbon biomass, respiration, and total bacterial colonies. The Soil Quality Index (SQI) of various paddy management practices shows very low to low soil quality values. The management of organic rice systems shows better Soil Quality Index with a score of 0,20 compared to other management. The practice of organic rice management shows that it can improve soil quality.


Author(s):  
Hiba Et-Tayeb ◽  
Khalid Ibno Namr ◽  
El Houssine El Mzouri ◽  
Bouchra El Bourhrami

Sign in / Sign up

Export Citation Format

Share Document