Numerical analysis of temperature field in domain of skin tissue for different external and internal thermal conditions

Physiotherapy ◽  
2008 ◽  
Vol 16 (2) ◽  
Author(s):  
Bohdan Mochnacki ◽  
Marek Jasiński
2010 ◽  
Vol 163-167 ◽  
pp. 1505-1509
Author(s):  
Xiao Yun Jia ◽  
Bao Long Lin

Based on the geological conditions of culvert of the South to North Water Transfer Project, lining temperature field of hydraulic tunnel for crack control is simulated by finite element software—ANSYS. According to numerical analysis results of lining temperature field, considering terrain condition, structural characteristics and climate, some engineering measures are taken during construction. Internal temperature of concrete is controlled effectively, concrete crack caused by temperature changes is solved successfully, and construction quality is assured. The difference of measuring data in-situ and calculating data is very small, which illustrate that calculated model is correct and parameters are reasonable. The results can act as reference for the design and construction of similar projects later.


2016 ◽  
Vol 46 (1) ◽  
pp. 33-49 ◽  
Author(s):  
Dušan Majcin ◽  
Roman Kutas ◽  
Dušan Bilčík ◽  
Vladimír Bezák ◽  
Ignat Korchagin

Abstract The contribution presents the results acquired both by direct cognitive geothermic methods and by modelling approaches of the lithosphere thermal state in the region of the Transcarpathian depression and surrounding units. The activities were aimed at the determination of the temperature field distribution and heat flow density distribution in the upper parts of the Earth’s crust within the studied area. Primary new terrestrial heat flow density map was constructed from values determined for boreholes, from their interpretations and from newest outcomes of geothermal modelling methods based on steady-state and transient approaches, and also from other recently gained geophysical and geological knowledge. Thereafter we constructed the maps of temperature field distribution for selected depth levels of up to 5000 m below the surface. For the construction we have used measured borehole temperature data, the interpolation and extrapolation methods, and the modelling results of the refraction effects and of the influences of source type anomalies. New maps and other geothermic data served for the determination of depths with rock temperatures suitable for energy utilization namely production of electric energy minimally by the binary cycles. Consequently the thermal conditions were used to identify the most perspective areas for geothermal energy exploitation in the region under study.


Sign in / Sign up

Export Citation Format

Share Document