scholarly journals Evaluating Genetic Diversity of Chilling Stress in Cotton Genotypes

2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Omid Sofalian ◽  
Somayyeh Azimy ◽  
Sodabeh Jahanbakhsh ◽  
Saeid Khomari ◽  
Sara Dezhsetan
2017 ◽  
Vol 43 (3) ◽  
pp. 277-288
Author(s):  
Amna Saeed ◽  
Eminur Elçi

Abstract Cotton (Gossypium hirsutum L.) is the most important natural textile fiber crop grown worldwide. Several biotic and abiotic stress factors affect cotton yield due to lower genetic diversity for the traits of particular interest. Verticillium wilt (VW) is one of the major factors incurring huge cotton yield losses. The most effective management option against VW is the development of resistant cultivars. The resistant cultivars must also have superior fiber quality and yield traits. Therefore, the current study was aimed at screening some of the identified simple sequence repeats (SSR) markers for VW resistance and fiber quality traits of cotton genotypes in Turkey. Fifty different cultivars were screened with 30 SSR markers. Polymerase chain reaction (PCR) was conducted to amplify the SSR markers. The amplified bands were scored as 0 or 1 for absence and presence, respectively. For the molecular data analysis, polymorphism information content (PIC) values of molecular markers were calculated. Among tested SSR markers 13 were found polymorphic, which produced a total of 677 loci. The number of alleles per marker ranged from 1 to 4 and, overall average PIC values of markers ranged from 0.00 to 0.76, respectively. Principal component analysis executed on presence absence data yielded two distinct groups of cultivars screened. Hierarchical clustering revealed low genetic diversity among the tested cultivars. Based on the results TamcotCamdES, Gloria, Natalia, Lydia, Teks, Tamcot SP37H, N87 and BA525 are the promising cultivars for further breeding studies. The results of the current study also revealed that 4 SSR markers (DPL752 and DPL322 for fiber traits, DPL0022 and GH215 for VW resistance) out of 30 could be used for improving VW resistance and fiber quality in cotton through marker assisted selection.


Author(s):  
Kanwal Zia ◽  
Syed Bilal Hussain

DNA markers application in marker-assisted breeding of cotton is handicapped due to low genetic diversity in cotton germplasm. The present study was designed to identify DNA markers, predominately simple sequence repeats (SSRs), associated with tolerance/resistance to heat stress as a consequence of boll shedding. To find out the genetic diversity a total of 24 cotton genotypes and 50 SSR primers were used. Total 288 alleles were produced with an average of 5.7 alleles per primer. Bootstrap cluster analysis used to generate a dendrogram that cluster the 24 accessions into two main clusters. Eleven out of 24 genotypes fall in a single cluster. Phenotypically H-4074 gives more diversity, while genotypically H-4074 sheared the same genetic background as H-4070, H-4091 and H-4090. Low genetic diversity was observed among both genotypic and phenotypic as maximum varieties fall in single group. This study helps for selecting diverse accessions with multiple phenotypic traits, which were drought to boll shedding. It suggests further elaborating the molecular genetic diversity by using new SSR marker to improve the yield of cotton cultivars. These preliminary results set the stage for initiating in depth marker-trait association studies, which will be instrumental for initiating marker-assisted breeding in cotton.


2019 ◽  
Vol 1 (1) ◽  
pp. 08-21
Author(s):  
Isong A. ◽  
◽  
Balu A. ◽  
Salihu B. Z. ◽  
Isong C. ◽  
...  

2016 ◽  
Vol 9 ◽  
pp. GEI.S40377 ◽  
Author(s):  
Pratibha Kottapalli ◽  
Mauricio Ulloa ◽  
Kameswara Rao Kottapalli ◽  
Paxton Payton ◽  
John Burke

The objective of this study was to explore the known narrow genetic diversity and discover single-nucleotide polymorphic (SNP) markers for marker-assisted breeding within Pima cotton ( Gossypium barbadense L.) leaf transcriptomes. cDNA from 25-day plants of three diverse cotton genotypes [Pima S6 (PS6), Pima S7 (PS7), and Pima 3-79 (P3-79)] was sequenced on Illumina sequencing platform. A total of 28.9 million reads (average read length of 138 bp) were generated by sequencing cDNA libraries of these three genotypes. The de novo assembly of reads generated transcriptome sets of 26,369 contigs for PS6, 25,870 contigs for PS7, and 24,796 contigs for P3-79. A Pima leaf reference transcriptome was generated consisting of 42,695 contigs. More than 10,000 single-nucleotide polymorphisms (SNPs) were identified between the genotypes, with 100% SNP frequency and a minimum of eight sequencing reads. The most prevalent SNP substitutions were C–-T and A–-G in these cotton genotypes. The putative SNPs identified can be utilized for characterizing genetic diversity, genotyping, and eventually in Pima cotton breeding through marker-assisted selection.


The Nucleus ◽  
2013 ◽  
Vol 56 (3) ◽  
pp. 171-178 ◽  
Author(s):  
Zahra Noormohammadi ◽  
Azam Rahnama ◽  
Masoud Sheidai

Sign in / Sign up

Export Citation Format

Share Document