scholarly journals Local Least Squares Spectral Filtering and Combination by Harmonic Functions on the Sphere

2011 ◽  
Vol 1 (4) ◽  
Author(s):  
L. Sjöberg
2019 ◽  
Vol 34 (3) ◽  
pp. 175-186 ◽  
Author(s):  
Marina B. Yuldasheva ◽  
Oleg I. Yuldashev

Abstract Solving linear divergence-curl system with Dirichlet conditions is reduced to finding an unknown vector function in the space of piecewise-polynomial gradients of harmonic functions. In this approach one can use the boundary least squares method with a harmonic basis of a high order of approximation formulated by the authors previously. The justification of this method is given. The properties of the bilinear form and approximating properties of the basis are investigated. Convergence of approximate solutions is proved. A numerical example with estimates of experimental orders of convergence in $\begin{array}{} {\bf V}_h^p \end{array}$-norm for different parameters h, p (p ⩽ 10) is presented. The method does not require specification of penalty weight function.


2021 ◽  
Vol 118 (5) ◽  
pp. e2016917118
Author(s):  
Jake L. Amey ◽  
Jake Keeley ◽  
Tajwar Choudhury ◽  
Ilya Kuprov

The lack of interpretability and trust is a much-criticized feature of deep neural networks. In fully connected nets, the signaling between inner layers is scrambled because backpropagation training does not require perceptrons to be arranged in any particular order. The result is a black box; this problem is particularly severe in scientific computing and digital signal processing (DSP), where neural nets perform abstract mathematical transformations that do not reduce to features or concepts. We present here a group-theoretical procedure that attempts to bring inner-layer signaling into a human-readable form, the assumption being that this form exists and has identifiable and quantifiable features—for example, smoothness or locality. We applied the proposed method to DEERNet (a DSP network used in electron spin resonance) and managed to descramble it. We found considerable internal sophistication: the network spontaneously invents a bandpass filter, a notch filter, a frequency axis rescaling transformation, frequency-division multiplexing, group embedding, spectral filtering regularization, and a map from harmonic functions into Chebyshev polynomials—in 10 min of unattended training from a random initial guess.


Aerospace ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 371
Author(s):  
Weidong Yin ◽  
Leizheng Shu ◽  
Yang Yu ◽  
Yu Shi

In this article, we present a free-vertex tetrahedral finite-element representation of irregularly shaped small bodies, which provides an alternative solution for estimating asteroid density distribution. We derived the transformations between gravitational potentials expressed by the free-vertex tetrahedral finite elements and the spherical harmonic functions. Inversely, the density of each free-vertex tetrahedral finite element can be estimated via the least-squares method, assuming a spherical harmonic gravitational function is present. The proposed solution is illustrated by modeling gravitational potential and estimating the density distribution of the simulated asteroid 216 Kleopatra.


Methodology ◽  
2015 ◽  
Vol 11 (3) ◽  
pp. 110-115 ◽  
Author(s):  
Rand R. Wilcox ◽  
Jinxia Ma

Abstract. The paper compares methods that allow both within group and between group heteroscedasticity when performing all pairwise comparisons of the least squares lines associated with J independent groups. The methods are based on simple extension of results derived by Johansen (1980) and Welch (1938) in conjunction with the HC3 and HC4 estimators. The probability of one or more Type I errors is controlled using the improvement on the Bonferroni method derived by Hochberg (1988) . Results are illustrated using data from the Well Elderly 2 study, which motivated this paper.


Sign in / Sign up

Export Citation Format

Share Document