The Defect Detection in Ceramic Materials Based on Time-Frequency Analysis by Using the Method of Impulse Noise

2011 ◽  
Vol 36 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Tahir Akinci

AbstractIn this study, it was achieved by using the method of impulse noise to detect internal or surface cracks that can occur in the production of ceramic plates. Ceramic materials are often used in the industry, especially as kitchenware and in areas such as the construction sector. Many different methods are used in the quality assurance processes of ceramic materials. In this study, the impact noise method was examined. This method is a test technique that was not used in applications. The method is presented as an examination technique based on whether there is a deformation on the material according to the sound coming from it as a result of a plastic bit hammer impact on the ceramic material. The application of the study was performed on plates made of ceramic materials. Here, it was made with the same type of model plates manufactured from the same material. The noise that would occur as a result of the impact applied on a point determined on the materials to be tested has been examined by the method of time-frequency analysis. The method applied gives pretty good results for distinguishing ceramic plates in good condition from those which are cracked.

2013 ◽  
Vol 284-287 ◽  
pp. 3115-3119
Author(s):  
Wei Song ◽  
Jia Hui Zuo ◽  
Peng Cheng Hu

The high accuracy time-frequency representation of non-stationary signals is one of the key researches in seismic signal analysis. Low-frequency part of the seismic data often has a higher frequency resolution, on the contrary it tends to have lower frequency resolution in the high frequency part. It’s difficult to fine characterize the time-frequency variation of non-stationary seismic signals by conventional time-frequency analysis methods due to the limitation of the window function. Therefore based on the Ricker wavelet, we put forward the matching pursuit seismic trace decomposition method. It decomposes the seismic records into a series of single component atoms with different centre time, dominant frequency and energy, by making use of the Wigner-Ville distribution, has the time-frequency resolution of seismic signal reach the limiting resolution of the uncertainty principle and skillfully avoid the impact of interference terms in conventional Wigner-Ville distribution.


2017 ◽  
Vol 63 (4) ◽  
pp. 347-354
Author(s):  
Mohamed Raouf Kousri ◽  
Virginie Deniau ◽  
Marc Heddebaut ◽  
Sylvie Baranowski

Abstract As many other industrial environments, the railway electromagnetic environment is characterized by a large number of electromagnetic signals and disturbances. Among these, transient signals, with high energy level and wide frequency spectrum, represent an important threat to different signaling subsystems. In this paper, a new methodology dedicated to the detection and the characterization of the transient disturbances is presented. Based on a flexible and adjustable time-frequency analysis, this methodology is used to evaluate the impact of transient disturbances on a ground-to-train radio communication. A test bench was developed in order to validate the results of this evaluation.


1997 ◽  
Vol 117 (3) ◽  
pp. 338-345 ◽  
Author(s):  
Masatake Kawada ◽  
Masakazu Wada ◽  
Zen-Ichiro Kawasaki ◽  
Kenji Matsu-ura ◽  
Makoto Kawasaki

Sign in / Sign up

Export Citation Format

Share Document