Hydrologic calibration and validation of the Soil and Water Assessment Tool for the Leon River watershed

2008 ◽  
Vol 63 (6) ◽  
pp. 533-541 ◽  
Author(s):  
C.G. Rossi ◽  
T.J. Dybala ◽  
D.N. Moriasi ◽  
J.G. Arnold ◽  
C. Amonett ◽  
...  
2005 ◽  
Author(s):  
Vibhava Srivastava ◽  
Sreekala Bajwa ◽  
and Indrajeet Chaubey

2013 ◽  
Vol 7 (3) ◽  
pp. 252-257

The subject of this article is the estimation of quantitative (hydrological) and qualitative parameters in the catchment of Ronnea (1800 Km2, located in south western Sweden) through the application of the Soil and Water Assessment Tool (SWAT). SWAT is a river basin model that was developed for the U.S.D.A. Agricultural Research Service, by the Blackland Research Center in Texas. The SWAT model is a widely known tool that has been used in several cases world-wide. It has the ability to predict the impact of land management practices on water, sediment and agricultural chemical yield in large complex watersheds. The present work investigates certain capabilities of the SWAT model which have not identified up to now. More in specific, the main targets of the work carried out are the following: • Identification of the existing hydrological and qualitative conditions • Preparation - Processing of data required to be used as input data of the model • Hydrological calibration - validation of the model, in 7 subbasins of the Catchment of Ronnea • Estimation and evaluation of the simulated qualitative parameters of the model All available data were offered by the relevant Institutes of Sweden, in the framework of the European program EUROHARP. The existing conditions in the catchment of Ronnea, are described in detail including topography, land uses, soil types, pollution sources, agricultural management practices, precipitation, temperature, wind speed, humidity, solar radiation as well as observed discharges and Nitrogen and Phosphorus substances concentrations. Most of the above data were used as input data for the application of SWAT model. Adequate methods were also used to complete missing values in time series and estimate additional parameters (such as soil parameters) required by the model. Hydrological calibration and validation took place for each outlet of the 7 subbasins of Ronnea catchment in an annual, monthly and daily step. The calibration was achieved by estimating parameters related to ground water movement and evaluating convergence between simulated and observed discharges by using mainly the Nash & Sutcliffe coefficient (NTD). Through the sensitivity analysis, main parameters of the hydrological simulation, were detected. According to the outputs of the SWAT model, the water balance of Ronnea catchment was also estimated. Hydrological calibration and validation is generally considered sufficient in an annual and monthly step. Hydrological calibration – validation in daily step, generally does not lead to high values of the NTD indicator. However, when compared to results obtained by the use of SWAT in Greece, a relatively high value of NTD is achieved in one subbasin. Finally, a comparison between the simulated and observed concentrations of total Phosphorus and Nitrogen was carried out.


2020 ◽  
Vol 13 (2) ◽  
pp. 576
Author(s):  
Letícia Lopes Martins ◽  
Wander Araújo Martins ◽  
Jener Fernando Leite De Moraes ◽  
Mário José Pedro Júnior ◽  
Isabella Clerici De Maria

A dificuldade na gestão de recursos hídricos aliada à dinâmica do uso e ocupação do solo em bacias hidrográficas agrícolas são fatores relevantes para a conservação da água e solo. A gestão de bacias hidrográficas, bem como o monitoramento de cenários de expansão agrícola e mudança no uso do solo, podem se beneficiar de ferramentas de modelagem hidrossedimentológica, como o SWAT (Soil and Water Assessment Tool). Entretanto, para que os resultados obtidos sejam confiáveis, os modelos precisam ser calibrados. Objetivou-se, neste trabalho, calibrar e validar o modelo SWAT, para a variável vazão, tendo como base a bacia hidrográfica do Ribeirão do Pinhal, Limeira -São Paulo, que se caracteriza pela expansão da cana-de-açúcar sobre áreas citrícolas. Dados de vazão de um posto fluviométrico localizado no exutório da bacia foram utilizados para a calibração e validação, a partir de séries temporais diferentes.  Utilizou-se o software QSWAT para a simulação hidrológica e o SWAT-CUP para a calibração e validação do modelo. O modelo foi calibrado e validado resultando nos seguintes índices estatísticos NSE=0,64; PBIAS=15,2 e RSR=0,60 para calibração e NSE=0,68 PBIAS=-2,8 e RSR=0,56 para a validação. O ajuste de parâmetros do SWAT (USLE_P, USLE_C, CN2) e do calendário de operações da cana-de-açúcar em acordo com a situação real da bacia foi necessário para a calibração do modelo. Os resultados indicam que o modelo SWAT subestima as vazões extremas, no entanto, dentro de faixa aceitável. O SWAT, após a calibração, pode ser utilizado na gestão de recursos hídricos na bacia do Ribeirão do Pinhal.Hydrological calibration of the SWAT model in a watershed characterized by the expansion of sugarcane cultivationA B S T R A C TThe difficulty in water resources management combined with the dynamics of land use and occupation in agricultural watersheds are relevant factors for water and soil conservation. River basin management, as well as monitoring scenarios of agricultural expansion and land-use change, can benefit from hydrossedimentological modeling tools such as the SWAT (Soil and Water Assessment Tool). However, for the results to be reliable, the models must be calibrated. The objective of this study was to calibrate and validate the SWAT model for the flow variable, based on the Ribeirão do Pinhal watershed, Limeira-São Paulo, which is characterized by the expansion of sugarcane over citrus areas. Flow data from a fluviometric station located in the basin's outfall were used for calibration and validation from different time series. QSWAT software was used for hydrological simulation and SWAT-CUP for model calibration and validation. The model was calibrated and validated resulting in the following statistical indices NSE = 0.64; PBIAS = 15.2 and RSR = 0.60 for calibration and NSE = 0.68 PBIAS = -2.8 and RSR = 0.56 for validation. Adjustment of SWAT parameters (USLE_P, USLE_C, and CN2) and the sugarcane operation schedule according to the actual basin situation was necessary for model calibration. The results indicate that the SWAT model underestimates the extreme flow rates, however, within an acceptable range. After calibration, the SWAT can be used to manage water resources in the Ribeirão do Pinhal basin.Keywords: Hydrologic simulation; land use; flow rate.


2013 ◽  
Vol 340 ◽  
pp. 942-946 ◽  
Author(s):  
Kai Xu ◽  
Hui Qing Peng

The Soil and Water Assessment Tool (SWAT) was used to simulate runoff yield in Tao River Basin on ArcView GIS platform. The main objective was to validate the performance of SWAT and the feasibility of this model as a simulator of runoff in a catchment. The investigation was conducted using a 6-year historical runoff record from 2001 to 2008 (2001-2004 for calibration and 2005-2008 for validation). The simulated monthly runoff matched the observed values satisfactorily, with Re was less than 20%, R2 > 0.78 and Nash-suttclife (Ens)>0.8 for both calibration and validation period at 4 hydrological stations. These indicated that the simulation of runoff was reasonable, reflecting the validity of SWAT model in Tao River Basin.


RBRH ◽  
2018 ◽  
Vol 23 (0) ◽  
Author(s):  
Paulo Rodrigo Zanin ◽  
Nadia Bernardi Bonuma ◽  
Claudia Weber Corseuil

ABSTRACT Calibration and validation of hydrosedimentological models, usually performed at the outlet of a single basin, does not always correctly represent the hydrosedimentological processes in the different subdivisions of dammed river systems. The aim of this study was to evaluate simple calibration techniques (watershed outlet) and multi-site calibration (watershed outlet and internal reservoirs) with the Soil and Water Assessment Tool - SWAT model, using two nested basins in the southern region of Brazil. Three modeling procedures were analyzed, adjusting the hydrological and sedimentological parameters of the watershed and the reservoirs. It was found that (a) the simplest calibration does not correctly represent the processes in reservoirs; (b) the multi-site calibration provided a better simulation of the hydrosedimentological dynamics of the nested basins; and (c) parameterizations of the SWAT reservoir module have limitations in the context of the study area. The results showed that the multi-site calibration in watershed with reservoirs is more appropriate.


Sign in / Sign up

Export Citation Format

Share Document