scholarly journals Hydrosedimentological modeling with SWAT using multi-site calibration in nested basins with reservoirs

RBRH ◽  
2018 ◽  
Vol 23 (0) ◽  
Author(s):  
Paulo Rodrigo Zanin ◽  
Nadia Bernardi Bonuma ◽  
Claudia Weber Corseuil

ABSTRACT Calibration and validation of hydrosedimentological models, usually performed at the outlet of a single basin, does not always correctly represent the hydrosedimentological processes in the different subdivisions of dammed river systems. The aim of this study was to evaluate simple calibration techniques (watershed outlet) and multi-site calibration (watershed outlet and internal reservoirs) with the Soil and Water Assessment Tool - SWAT model, using two nested basins in the southern region of Brazil. Three modeling procedures were analyzed, adjusting the hydrological and sedimentological parameters of the watershed and the reservoirs. It was found that (a) the simplest calibration does not correctly represent the processes in reservoirs; (b) the multi-site calibration provided a better simulation of the hydrosedimentological dynamics of the nested basins; and (c) parameterizations of the SWAT reservoir module have limitations in the context of the study area. The results showed that the multi-site calibration in watershed with reservoirs is more appropriate.

2013 ◽  
Vol 7 (3) ◽  
pp. 252-257

The subject of this article is the estimation of quantitative (hydrological) and qualitative parameters in the catchment of Ronnea (1800 Km2, located in south western Sweden) through the application of the Soil and Water Assessment Tool (SWAT). SWAT is a river basin model that was developed for the U.S.D.A. Agricultural Research Service, by the Blackland Research Center in Texas. The SWAT model is a widely known tool that has been used in several cases world-wide. It has the ability to predict the impact of land management practices on water, sediment and agricultural chemical yield in large complex watersheds. The present work investigates certain capabilities of the SWAT model which have not identified up to now. More in specific, the main targets of the work carried out are the following: • Identification of the existing hydrological and qualitative conditions • Preparation - Processing of data required to be used as input data of the model • Hydrological calibration - validation of the model, in 7 subbasins of the Catchment of Ronnea • Estimation and evaluation of the simulated qualitative parameters of the model All available data were offered by the relevant Institutes of Sweden, in the framework of the European program EUROHARP. The existing conditions in the catchment of Ronnea, are described in detail including topography, land uses, soil types, pollution sources, agricultural management practices, precipitation, temperature, wind speed, humidity, solar radiation as well as observed discharges and Nitrogen and Phosphorus substances concentrations. Most of the above data were used as input data for the application of SWAT model. Adequate methods were also used to complete missing values in time series and estimate additional parameters (such as soil parameters) required by the model. Hydrological calibration and validation took place for each outlet of the 7 subbasins of Ronnea catchment in an annual, monthly and daily step. The calibration was achieved by estimating parameters related to ground water movement and evaluating convergence between simulated and observed discharges by using mainly the Nash & Sutcliffe coefficient (NTD). Through the sensitivity analysis, main parameters of the hydrological simulation, were detected. According to the outputs of the SWAT model, the water balance of Ronnea catchment was also estimated. Hydrological calibration and validation is generally considered sufficient in an annual and monthly step. Hydrological calibration – validation in daily step, generally does not lead to high values of the NTD indicator. However, when compared to results obtained by the use of SWAT in Greece, a relatively high value of NTD is achieved in one subbasin. Finally, a comparison between the simulated and observed concentrations of total Phosphorus and Nitrogen was carried out.


2020 ◽  
Vol 13 (2) ◽  
pp. 576
Author(s):  
Letícia Lopes Martins ◽  
Wander Araújo Martins ◽  
Jener Fernando Leite De Moraes ◽  
Mário José Pedro Júnior ◽  
Isabella Clerici De Maria

A dificuldade na gestão de recursos hídricos aliada à dinâmica do uso e ocupação do solo em bacias hidrográficas agrícolas são fatores relevantes para a conservação da água e solo. A gestão de bacias hidrográficas, bem como o monitoramento de cenários de expansão agrícola e mudança no uso do solo, podem se beneficiar de ferramentas de modelagem hidrossedimentológica, como o SWAT (Soil and Water Assessment Tool). Entretanto, para que os resultados obtidos sejam confiáveis, os modelos precisam ser calibrados. Objetivou-se, neste trabalho, calibrar e validar o modelo SWAT, para a variável vazão, tendo como base a bacia hidrográfica do Ribeirão do Pinhal, Limeira -São Paulo, que se caracteriza pela expansão da cana-de-açúcar sobre áreas citrícolas. Dados de vazão de um posto fluviométrico localizado no exutório da bacia foram utilizados para a calibração e validação, a partir de séries temporais diferentes.  Utilizou-se o software QSWAT para a simulação hidrológica e o SWAT-CUP para a calibração e validação do modelo. O modelo foi calibrado e validado resultando nos seguintes índices estatísticos NSE=0,64; PBIAS=15,2 e RSR=0,60 para calibração e NSE=0,68 PBIAS=-2,8 e RSR=0,56 para a validação. O ajuste de parâmetros do SWAT (USLE_P, USLE_C, CN2) e do calendário de operações da cana-de-açúcar em acordo com a situação real da bacia foi necessário para a calibração do modelo. Os resultados indicam que o modelo SWAT subestima as vazões extremas, no entanto, dentro de faixa aceitável. O SWAT, após a calibração, pode ser utilizado na gestão de recursos hídricos na bacia do Ribeirão do Pinhal.Hydrological calibration of the SWAT model in a watershed characterized by the expansion of sugarcane cultivationA B S T R A C TThe difficulty in water resources management combined with the dynamics of land use and occupation in agricultural watersheds are relevant factors for water and soil conservation. River basin management, as well as monitoring scenarios of agricultural expansion and land-use change, can benefit from hydrossedimentological modeling tools such as the SWAT (Soil and Water Assessment Tool). However, for the results to be reliable, the models must be calibrated. The objective of this study was to calibrate and validate the SWAT model for the flow variable, based on the Ribeirão do Pinhal watershed, Limeira-São Paulo, which is characterized by the expansion of sugarcane over citrus areas. Flow data from a fluviometric station located in the basin's outfall were used for calibration and validation from different time series. QSWAT software was used for hydrological simulation and SWAT-CUP for model calibration and validation. The model was calibrated and validated resulting in the following statistical indices NSE = 0.64; PBIAS = 15.2 and RSR = 0.60 for calibration and NSE = 0.68 PBIAS = -2.8 and RSR = 0.56 for validation. Adjustment of SWAT parameters (USLE_P, USLE_C, and CN2) and the sugarcane operation schedule according to the actual basin situation was necessary for model calibration. The results indicate that the SWAT model underestimates the extreme flow rates, however, within an acceptable range. After calibration, the SWAT can be used to manage water resources in the Ribeirão do Pinhal basin.Keywords: Hydrologic simulation; land use; flow rate.


2013 ◽  
Vol 340 ◽  
pp. 942-946 ◽  
Author(s):  
Kai Xu ◽  
Hui Qing Peng

The Soil and Water Assessment Tool (SWAT) was used to simulate runoff yield in Tao River Basin on ArcView GIS platform. The main objective was to validate the performance of SWAT and the feasibility of this model as a simulator of runoff in a catchment. The investigation was conducted using a 6-year historical runoff record from 2001 to 2008 (2001-2004 for calibration and 2005-2008 for validation). The simulated monthly runoff matched the observed values satisfactorily, with Re was less than 20%, R2 > 0.78 and Nash-suttclife (Ens)>0.8 for both calibration and validation period at 4 hydrological stations. These indicated that the simulation of runoff was reasonable, reflecting the validity of SWAT model in Tao River Basin.


Heliyon ◽  
2019 ◽  
Vol 5 (7) ◽  
pp. e02106 ◽  
Author(s):  
J. Daramola ◽  
T.M. Ekhwan ◽  
J. Mokhtar ◽  
K.C. Lam ◽  
G.A. Adeogun

2020 ◽  
Author(s):  
Paul D. Wagner ◽  
Katrin Bieger ◽  
Jeffrey G. Arnold ◽  
Nicola Fohrer

<p>The hydrology of rural lowland catchments in Northern Germany is characterized by near-surface groundwater tables and extensive tile drainage. Previous research has shown that representing these characteristics with the hydrologic model SWAT (Soil and Water Assessment Tool) required an improvement of groundwater processes, which has been achieved by dividing the shallow aquifer into a fast and a slow shallow aquifer. The latest version of the Soil and Water Assessment Tool (SWAT+) features several improvements compared to previous versions of the model, e.g. the definition of landscape units that allow for a better representation of spatio-temporal dynamics. To evaluate the new model capabilities for lowland catchments, we assess the performance of SWAT+ in comparison to previous SWAT applications in the Kielstau Catchment in Northern Germany. The Kielstau Catchment is about 50 km² large, is dominated by agricultural land use, and has been thoroughly monitored since 2005. In particular, we explore the capabilities of SWAT+ in terms of watershed configuration and simulation of landscape processes by comparing two model setups. The first setup is comparable to previous SWAT models for the catchment, i.e. yields from hydrologic response units are summed up at subbasin level and added directly to the stream. In the second SWAT+ model, subbasins are divided into upland areas and floodplains and runoff is routed across the landscape before it reaches the streams. Model performance is assessed with regard to measured stream flow at the outlet of the catchment. Results from the new SWAT+ model confirm that two groundwater layers are necessary to represent stream flow in the catchment. The representation of routing processes from uplands to floodplains in the model further improved the simulation of stream flow. The outcomes of this study are expected to contribute to a better understanding and model representation of lowland hydrology.</p>


2008 ◽  
Vol 348 (3-4) ◽  
pp. 279-291 ◽  
Author(s):  
Zachary M. Easton ◽  
Daniel R. Fuka ◽  
M. Todd Walter ◽  
Dillon M. Cowan ◽  
Elliot M. Schneiderman ◽  
...  

2012 ◽  
Vol 15 (4) ◽  
pp. 18-32
Author(s):  
Khoi Nguyen Dao

In this paper, the author investigated the effects of climate change on streamflow in Srepok watershed. The climate change scenarios were built by downscaling method (delta change method) based on the outputs of MIROC 3.2 Hires GCM. The SWAT (Soil and Water Assessment Tool) model was used to investigate the impacts on streamflow under climate change scenarios. The calibration and validation results showed that the SWAT model was able to simulate the streamflow well. Their difference in simulating the streamflow under future climate scenarios was also investigated. Results indicated a 1.3-3.9oC increase in annual temperature and a -4.4 to -0.5% decreases in annual precipitation corresponded to a decrease in streamflow of about -7.6 to -2.8%. The large decrease in precipitation and runoff are observed in the dry season.


Author(s):  
Timketa Adula Duguma

Abstract: In this study the semi-distributed model SWAT (Soil and Water Assessment Tool), were applied to evaluate stream flow of Didessa sub basin, which is one of the major sub basins in Abay river basin of Ethiopia. The study evaluated the quality of observed meteorological and hydrological data, established SWAT hydrological model, identified the most sensitive parameters, evaluated the best distribution for flow and developed peak flow for major tributary in the sub basin. The result indicated that the SWAT model developed for the sub basin evaluated at multi hydro-gauging stations and its performance certain with the statistical measures, coefficient about determination (R2) and also Nash coefficient (NS) with values ranging 0.62 to 0.8 and 0.6 to 0.8 respectively at daily time scale. The values of R2 and NS increases at monthly time scale and found ranging 0.75 to 0.92 and 0.71 to 0.91 respectively. Sensitivity analysis is performed to identify parameters those were most sensitive for the sub basin. CN2, GWQMN, CH_K, ALPHA_BNK and LAT_TIME are the most sensitive parameters in the sub basin. Finally, the peak flow for 2-10000 returns periods were determined after the best probability distribution is identified in EasyFit computer program.


2018 ◽  
Vol 10 (3) ◽  
pp. 851 ◽  
Author(s):  
Katherine Merriman ◽  
Amy Russell ◽  
Cynthia Rachol ◽  
Prasad Daggupati ◽  
Raghavan Srinivasan ◽  
...  

Subwatersheds within the Great Lakes “Priority Watersheds” were targeted by the Great Lakes Restoration Initiative (GLRI) to determine the effectiveness of the various best management practices (BMPs) from the U.S. Department of Agriculture-Natural Resources Conservation Service National Conservation Planning (NCP) Database. A Soil and Water Assessment Tool (SWAT) model is created for Alger Creek, a 50 km2 tributary watershed to the Saginaw River in Michigan. Monthly calibration yielded very good Nash–Sutcliffe efficiency (NSE) ratings for flow, sediment, total phosphorus (TP), dissolved reactive phosphorus (DRP), and total nitrogen (TN) (0.90, 0.79, 0.87, 0.88, and 0.77, respectively), and satisfactory NSE rating for nitrate (0.51). Two-year validation results in at least satisfactory NSE ratings for flow, sediment, TP, DRP, and TN (0.83, 0.54, 0.73, 0.53, and 0.60, respectively), and unsatisfactory NSE rating for nitrate (0.28). The model estimates the effect of BMPs at the field and watershed scales. At the field-scale, the most effective single practice at reducing sediment, TP, and DRP is no-tillage followed by cover crops (CC); CC are the most effective single practice at reducing nitrate. The most effective BMP combinations include filter strips, which can have a sizable effect on reducing sediment and phosphorus loads. At the watershed scale, model results indicate current NCP BMPs result in minimal sediment and nutrient reductions (<10%).


Sign in / Sign up

Export Citation Format

Share Document