scholarly journals DESIGN AND INNOVATION IN WESTERN'S INTEGRATED ENGINEERING PROGRAM

Author(s):  
Ralph O. Buchal

Society needs innovators to solve pressing design problems, and emerging technologies drive innovation. The Integrated Engineering Program offered at the University of Western Ontario develops engineering innovators by offering an interdisciplinary engineering education with emphasis on emerging technologies and engineering design. The program incorporates design in every year, and offers students the unique opportunity to participate in large multi-year design projects as part of their formal engineering education. A survey shows that students rate these features of the program important and valuable contributors toward their career goals.

Author(s):  
D. S. Petkau ◽  
D. D. Mann

Student design projects in engineering courses are usually short term conceptual design problems. Upon completion of the projects it is difficult to assess which design activities had the greatest contribution to the success of the design. In the fall of 2006, students in 2nd, 3rd, and 4th year Design Trilogy courses at the University of Manitoba were asked to keep extensive design journals. Design teams consisted of multiyear students completing various industry projects. Student design activities recorded in the journals were coded. Data were compared between design teams and between students in the different years of study. This paper describes the evaluation process and reports on the preliminary findings.


Author(s):  
Mahmoud Dinar ◽  
Yong-Seok Park ◽  
Jami J. Shah

Conventional syllabi of engineering design courses either do not pay enough attention to conceptual design skills, or they lack an objective assessment of those skills to show students’ progress. During a semester-long course of advanced engineering product design, we assigned three major design projects to twenty five students. For each project we asked them to formulate the problems in the Problem Formulator web-based testbed. In addition, we collected sketches for all three design problems, feasibility analyses for the last two, and a working prototype for the final project. We report the students’ problem formulation and ideation in terms of a set of nine problem formulation characteristics and ASU’s ideation effectiveness metrics respectively. We discuss the limitations that the choice of the design problems caused, and how the progress of a class of students during a semester-long design course resulted in a convergence in sets of metrics that we have defined to characterize problem formulation and ideation. We also review the results of students of a similar course which we reported last year in order to find common trends.


Author(s):  
Pouyan Jazayeri ◽  
William (Bill) Rosehard ◽  
David Westwick

This paper presents some of the experiences gained from the interdisciplinary design course offered at the university of Calgary in the 2004-2005 academic year. It also provides a few proposals and recommendations to improve the course (or similar versions) in the future. The components of the course—lecture content, group structure, design projects, and general course structure—are analyzed and some of the challenges—equal contribution from members, scheduling, grading, and more— are described in this paper. The approaches used in overcoming these problems, along with further suggestions, are also detailed.


Author(s):  
Chris Rennick ◽  
Eugene Li

The capstone design project is ubiquitous in engineering programs worldwide, and is seen by students as the single most important activity in their undergraduate careers. Staff and faculty at the University of Waterloo identified three issues with the current capstone process: students are unaware of industrial suppliers, they lack multi-disciplinary exposure, and they often struggle to identify "good" needs for their projects. The Engineering IDEAs Clinic, with support from instructors and staff from across Engineering, developed a conference for students to address these issues. EngCon – aimed at students in third/fourth year – brought students together with their peers from other programs, instructors from across the Faculty, and representatives from suppliers (both external industry, and internal support units) with the goal of improving their capstone projects. This paper presents the design and implementation of EngCon in both 2017 and 2018 with lessons learned from offering a large coordinated set of workshops aimed at students as they enter their capstone design projects.  


Author(s):  
W.C.D. DeGagne ◽  
Paul Labossiere

One of the most effective and efficient ways for an engineering program to facilitate compliance with the Canadian Engineering Accreditation Board (CEAB) accreditation criteria is through capstone design projects and courses. Currently, the University of Manitoba Faculty of Engineering has several capstone design courses; however, each is independently focused on its own respective discipline. The resulting educational experience for students, though rigorous and challenging, is maintained within the boundaries of the students’ engineering discipline, thereby neglecting to provide the opportunity for students to work with people from multiple disciplines and across multiple fields. This style/mode of education, where students work in silos, arguably does not reflect real world engineering. Program representatives from the Faculty of Engineering agree. An interdisciplinary capstone course would provide a more rounded engineering education for students. Exposing students to other disciplines and facilitating their learning of the knowledge, skills and behaviours required to work in a multidisciplinary capacity will more effectively prepare students for the real world. Thus, to better comply with CEAB requirements and to increase the breadth and depth of students’ engineering education, an interdisciplinary capstone pilot course will be launched at the University of Manitoba.This paper explains how this multidisciplinary capstone pilot program has been developed, and touches on the early stages of its initiation and implementation.


Author(s):  
Chunfang Zhou ◽  
Kathrin Otrel-Cass ◽  
Tom Børsen

In this chapter, the authors aim to explore the necessity of teaching ethics as part of engineering education based on the gaps between learning “hard” knowledge and “soft” skills in the current educational system. They discuss why the nature of engineering practices makes it difficult to look beyond dealing with engineering design problems, identify the difference between knowledge and risk perceptions, and how to manage such tensions. They also explore the importance of developing moral responsibilities of engineers and the need to humanize technology and engineering, as technological products are not value neutral. With a focus on Problem-Based Learning (PBL), the authors examine why engineers need to incorporate ethical codes in their decision-making process and professional tasks. Finally, they discuss how to build creative learning environments that can support attaining the objectives of engineering education.


Author(s):  
Jay Kim ◽  
Teik Lim ◽  
Randall Allemang ◽  
Bob Rost

A new pedagogical approach called engineering education through degree-long project has been implemented in the mechanical engineering program at the University of Cincinnati as a part of the NSF CCLI project. The approach integrates selected courses across the undergraduate curriculum of the mechanical engineering program using a degree-long project (DLP) as the theme. Design of Formula SAE® race car was employed as the first DLP. In each course in the sequence, the concept of the DLP approach and the role of the assignment in the course in the overall DLP are explained to students. In early-year courses, assignments are simple problems designed to show how abstract concepts are eventually applied to engineering tasks. In later-year courses, more involved design projects are used aiming at nurturing the ability to solve open-ended engineering problems. In conducting the approach, the most difficult part was developing an interesting and challenging problem which is relevant to practical applications, especially in early year courses. Findings through student evaluations and a stake-holders workshop on the improvement of the approach are discussed.


Author(s):  
Nishant Balakrishnan

In the context of teaching design, engineers often have a strong preference for problem-based learning because the skills they are trying to teach are intrinsic to the solving of design problems. The proliferation of problem-based learning (PBL) in capstone and now cornerstone engineering design courses is well supported by industry and faculty and the trend has been towards seeing more PBL in engineering design courses. This paper explores the basic selection of engineering design problems and presents a fairly simple dilemma: the skills that are required to solve a problem are not necessarily the skills that are taught by the problem if the problem is truly open-ended. This paper presents the idea of using engineering problems that are carefully constructed simulacra of real-world problems with built in scaffolding to create PBL experiences for students that are educationally complete and meaningful. This paper presents examples from two courses developed at the University of Manitoba based on this approach, outcomes of and responses to the course layout, and ideas for how this model can be extended to other courses or programs.


Author(s):  
Ralph O. Buchal

All engineering programs in Canada must culminate in a significant design experience. This paper describes the capstone design course in the Mechanical Engineering Program at the University of Western Ontario. Self-selected student teams choose from several types of projects: faculty-defined projects, student-defined entrepreneurial projects, student design competitions, and industry-sponsored projects. These choices accommodate a wide range of interests and career goals. The primary sources of project funding are industry sponsorship fees and matching funding through the Ontario Centres of Excellence Connections Program. The majority of project expenses are for parts, materials, prototype construction and testing.


Sign in / Sign up

Export Citation Format

Share Document