scholarly journals EVALUATING STUDENT DESIGN ACTIVITY IN ENGINEERING DESIGN PROJECTS

Author(s):  
D. S. Petkau ◽  
D. D. Mann

Student design projects in engineering courses are usually short term conceptual design problems. Upon completion of the projects it is difficult to assess which design activities had the greatest contribution to the success of the design. In the fall of 2006, students in 2nd, 3rd, and 4th year Design Trilogy courses at the University of Manitoba were asked to keep extensive design journals. Design teams consisted of multiyear students completing various industry projects. Student design activities recorded in the journals were coded. Data were compared between design teams and between students in the different years of study. This paper describes the evaluation process and reports on the preliminary findings.

Author(s):  
Ralph O. Buchal

Society needs innovators to solve pressing design problems, and emerging technologies drive innovation. The Integrated Engineering Program offered at the University of Western Ontario develops engineering innovators by offering an interdisciplinary engineering education with emphasis on emerging technologies and engineering design. The program incorporates design in every year, and offers students the unique opportunity to participate in large multi-year design projects as part of their formal engineering education. A survey shows that students rate these features of the program important and valuable contributors toward their career goals.


Author(s):  
Nishant Balakrishnan

In the context of teaching design, engineers often have a strong preference for problem-based learning because the skills they are trying to teach are intrinsic to the solving of design problems. The proliferation of problem-based learning (PBL) in capstone and now cornerstone engineering design courses is well supported by industry and faculty and the trend has been towards seeing more PBL in engineering design courses. This paper explores the basic selection of engineering design problems and presents a fairly simple dilemma: the skills that are required to solve a problem are not necessarily the skills that are taught by the problem if the problem is truly open-ended. This paper presents the idea of using engineering problems that are carefully constructed simulacra of real-world problems with built in scaffolding to create PBL experiences for students that are educationally complete and meaningful. This paper presents examples from two courses developed at the University of Manitoba based on this approach, outcomes of and responses to the course layout, and ideas for how this model can be extended to other courses or programs.


Author(s):  
Danny D Mann ◽  
Kris J Dick ◽  
Sandra A Ingram

In previous years, several improvements to the teaching of engineering design were made by staff in the Department of Biosystems Engineering at The University of Manitoba. The first innovation occurred when a trilogy of courses spanning the final three years of the program was introduced as a replacement for a single capstone course in the final year of the program. In its original conception, engineering students were to get three opportunities to be involved in design problems originating from industry, with greater expectations with each subsequent experience. A second innovation occurred when technical communication was formally integrated within the trilogy of design courses. This innovation has helped engineering students realize the value of professional communication skills in collaborating with each other and in preparing reports and presentations for an industry client. A third innovation occurred three years ago when the decision was made to allow students to participate in the prototyping of their designs. The so-called “Design Trilogy” now consists of a single course (Design Trilogy I) taken during the second year of the engineering program (which builds upon the first-year design experience with the requirement of a conceptual solution in response to a design problem provided by industry) and two courses taken during the final year of the program. Students are required to have a design completed on paper by the completion of Design Trilogy II and fabrication of the prototype occurs during Design Trilogy III. The student experience in the Design Trilogy, with particular emphasis on curriculum innovations in Design Trilogy III, will be discussed.


Author(s):  
Mahmoud Dinar ◽  
Yong-Seok Park ◽  
Jami J. Shah

Conventional syllabi of engineering design courses either do not pay enough attention to conceptual design skills, or they lack an objective assessment of those skills to show students’ progress. During a semester-long course of advanced engineering product design, we assigned three major design projects to twenty five students. For each project we asked them to formulate the problems in the Problem Formulator web-based testbed. In addition, we collected sketches for all three design problems, feasibility analyses for the last two, and a working prototype for the final project. We report the students’ problem formulation and ideation in terms of a set of nine problem formulation characteristics and ASU’s ideation effectiveness metrics respectively. We discuss the limitations that the choice of the design problems caused, and how the progress of a class of students during a semester-long design course resulted in a convergence in sets of metrics that we have defined to characterize problem formulation and ideation. We also review the results of students of a similar course which we reported last year in order to find common trends.


Author(s):  
Lorenzo Giunta ◽  
Fatma Ben Guefrache ◽  
Elies Dekoninck ◽  
James Gopsill ◽  
Jamie O'Hare ◽  
...  

AbstractSAR provides an unobtrusive implementation of AR and enables multiple stakeholders to observe and interact with an augmented physical model. This is synonymous with co-design activities and hence, there is a potential for SAR to have a significant impact in the way design teams may set-up and run their co-design activities in the future. Whilst there are a growing number of studies which apply SAR to design activities, few studies exist that examine a particular element of a design activity in a controlled manner. This paper will begin to fill this gap through the controlled study of SAR and its effects on the communication between participants of a co-design activity. To do so the paper compares a controlled design session, using more traditional methods of design representations (3D models on a screen), to sessions run using SAR. The sessions are then analysed to gather information on the gestures used by the participants as well as the overall efficiency of the participants at completing the set design task. The paper concludes that the data gathered tentatively supports a link between the use of SAR and improved communication between design session participants.


1996 ◽  
Vol 05 (02n03) ◽  
pp. 131-151 ◽  
Author(s):  
WEIMING SHEN ◽  
JEAN-PAUL A. BARTHES

Real world engineering design projects require the cooperation of multidisciplinary design teams using sophisticated and powerful engineering tools. The individuals or the individual groups of the multidisciplinary design teams work in parallel and independently often for quite a long time with different tools located on various sites. In order to ensure the coordination of design activities in the different groups or the cooperation among the different tools, it is necessary to develop an efficient design environment. This paper discusses a distributed architecture for integrating such engineering tools in an open design environment, organized as a population of asynchronous cognitive agents. Before introducing the general architecture and the communication protocol, issues about an agent architecture and inter-agent communications are discussed. A prototype of such an environment with seven independent agents located in several workstations and microcomputers is then presented and demonstrated on an example of a small mechanical design.


Author(s):  
Pouyan Jazayeri ◽  
William (Bill) Rosehard ◽  
David Westwick

This paper presents some of the experiences gained from the interdisciplinary design course offered at the university of Calgary in the 2004-2005 academic year. It also provides a few proposals and recommendations to improve the course (or similar versions) in the future. The components of the course—lecture content, group structure, design projects, and general course structure—are analyzed and some of the challenges—equal contribution from members, scheduling, grading, and more— are described in this paper. The approaches used in overcoming these problems, along with further suggestions, are also detailed.


Author(s):  
Amirali Ommi ◽  
Yong Zeng ◽  
Catharine C. Marsden

 Abstract – Engineering design is a decision making process that needs a good perception of the design problem to be solved. Design problems are usually solved in a team. Teams need the existence of a good design problem perception to create design solutions. This study provides an approach for elaborating a descriptive model to describe how the perception process works within a design team. This study is going to propose an approach for integrating a theoretical model of design creativity with team mental models, so they can be used for elaborating the descriptive model of perception in design teams. The NSERC Chair in Aerospace Design Engineering (NCADE) at Concordia University holds a capstone project which will be considered to be used as a test bed for validating proposed model through experimental analysis. Proposed experiments and further research are introduced at the end of paper.


Author(s):  
Denis Proulx

According to the Canadian Engineering Accreditation Board, all engineering programs in Canada must include a minimum of 15% of activities allocated to design. One can assume that these activities vary in content and scope between different programs. In this context, how can we define engineering design? Is there a recognized academic definition? Should our design goals be aligned with industrial needs and practice and if so, what should be the content of our design activities and how should they be structured? How is it possible to reach academic design goals given the limited resources available in our engineering schools? These are some of questions that will be addressed in this paper with the intent of better understanding the very important aspect of design’s engineering practice. Additional topics include: the change in design philosophy and approach resulting from a major program reform in the Mechanical Engineering Department at Université de Sherbrooke as well as the importance of industrial partnerships in design projects.


Author(s):  
Chris Rennick ◽  
Eugene Li

The capstone design project is ubiquitous in engineering programs worldwide, and is seen by students as the single most important activity in their undergraduate careers. Staff and faculty at the University of Waterloo identified three issues with the current capstone process: students are unaware of industrial suppliers, they lack multi-disciplinary exposure, and they often struggle to identify "good" needs for their projects. The Engineering IDEAs Clinic, with support from instructors and staff from across Engineering, developed a conference for students to address these issues. EngCon – aimed at students in third/fourth year – brought students together with their peers from other programs, instructors from across the Faculty, and representatives from suppliers (both external industry, and internal support units) with the goal of improving their capstone projects. This paper presents the design and implementation of EngCon in both 2017 and 2018 with lessons learned from offering a large coordinated set of workshops aimed at students as they enter their capstone design projects.  


Sign in / Sign up

Export Citation Format

Share Document