Evaluating the Effectiveness of Problem Formulation and Ideation Skills Learned Throughout an Engineering Design Course

Author(s):  
Mahmoud Dinar ◽  
Yong-Seok Park ◽  
Jami J. Shah

Conventional syllabi of engineering design courses either do not pay enough attention to conceptual design skills, or they lack an objective assessment of those skills to show students’ progress. During a semester-long course of advanced engineering product design, we assigned three major design projects to twenty five students. For each project we asked them to formulate the problems in the Problem Formulator web-based testbed. In addition, we collected sketches for all three design problems, feasibility analyses for the last two, and a working prototype for the final project. We report the students’ problem formulation and ideation in terms of a set of nine problem formulation characteristics and ASU’s ideation effectiveness metrics respectively. We discuss the limitations that the choice of the design problems caused, and how the progress of a class of students during a semester-long design course resulted in a convergence in sets of metrics that we have defined to characterize problem formulation and ideation. We also review the results of students of a similar course which we reported last year in order to find common trends.

Author(s):  
Hong Wee Lim ◽  
Kim Hoo Goh ◽  
Wen Feng Lu

With the recommendation from ABET, each engineering student should go through a major engineering design experience and understand how to go from design specifications to a final artifact. The Department of Mechanical Engineering at the National University of Singapore (NUS) started automotive design projects including competition vehicles and proof of concept vehicles for its undergraduate students many years ago. These projects aim to provide practical engineering education to the students through vehicle design and fabrication with hands-on experience. The project lifecycle usually does not last longer than one year as it is governed by the competition and the academic cycle. With many years of experience supervising students, the best practice of guiding students learning through this engineering design project within one academic year is developed. Before each project, students will first go through training and apprenticeship. Such project usually starts with problem formulation that studies the requirements of vehicle for the competition and the resources available. The team of students will go from design specifications to a final vehicle prototype with generating alternatives, synthesizing, analyzing, fabrication, testing and evaluating. This method allows sustainability in vehicle design projects. NUS Eco-car project is used as a case study to illustrate the best practice. Our past experience showed that students trained in this project have strong practical and analytical skills and are able to manage and communicate in a team well.


Author(s):  
Ralph O. Buchal

Society needs innovators to solve pressing design problems, and emerging technologies drive innovation. The Integrated Engineering Program offered at the University of Western Ontario develops engineering innovators by offering an interdisciplinary engineering education with emphasis on emerging technologies and engineering design. The program incorporates design in every year, and offers students the unique opportunity to participate in large multi-year design projects as part of their formal engineering education. A survey shows that students rate these features of the program important and valuable contributors toward their career goals.


Author(s):  
W. G. Dunford

Experience with various design related courses is described. In particular, the use of laboratory examinations to test design skills is discussed. Examples of design projects at both junior and senior levels are outlined.


Author(s):  
G. Gary Wang ◽  
S. Shan

Computation-intensive design problems are becoming increasingly common in manufacturing industries. The computation burden is often caused by expensive analysis and simulation processes in order to reach a comparable level of accuracy as physical testing data. To address such a challenge, approximation or metamodeling techniques are often used. Metamodeling techniques have been developed from many different disciplines including statistics, mathematics, computer science, and various engineering disciplines. These metamodels are initially developed as “surrogates” of the expensive simulation process in order to improve the overall computation efficiency. They are then found to be a valuable tool to support a wide scope of activities in modern engineering design, especially design optimization. This work reviews the state-of-the-art metamodel-based techniques from a practitioner’s perspective according to the role of metamodeling in supporting design optimization, including model approximation, design space exploration, problem formulation, and solving various types of optimization problems. Challenges and future development of metamodeling in support of engineering design is also analyzed and discussed.


Author(s):  
D. S. Petkau ◽  
D. D. Mann

Student design projects in engineering courses are usually short term conceptual design problems. Upon completion of the projects it is difficult to assess which design activities had the greatest contribution to the success of the design. In the fall of 2006, students in 2nd, 3rd, and 4th year Design Trilogy courses at the University of Manitoba were asked to keep extensive design journals. Design teams consisted of multiyear students completing various industry projects. Student design activities recorded in the journals were coded. Data were compared between design teams and between students in the different years of study. This paper describes the evaluation process and reports on the preliminary findings.


Author(s):  
Mahmoud Dinar ◽  
Jami J. Shah

Problem formulation is an essential design skill for which assessment methods have been less commonly developed. In order to evaluate the progress of a group of graduate students in mechanical engineering design in regard with the problem formulation skill, they were asked to work on three design problems using the Problem Formulator web tool during their course work. Changes in a set of measures elicited from this data were examined in addition to sketches, simulations, and working prototypes. Inventories of requirements and issues, as well as concepts derived from morphological charts were created to assess designers’ skills and outcomes.


Author(s):  
L. Siddharth ◽  
Amaresh Chakrabarti ◽  
Srinivasan Venkataraman

Analogical design has been a long-standing approach to solve engineering design problems. However, it is still unclear as to how analogues should be presented to engineering design in order to maximize the utility of these. The utility is minimal when analogues are complex and belong to other domain (e.g., biology). Prior work includes the use of a function model called SAPPhIRE to represent over 800 biological and engineered systems. SAPPhIRE stands for the entities: States, Actions, Parts, Phenomena, Inputs, oRgans, and Effects that together represent the functionality of a system at various levels of abstraction. In this paper, we combine instances of SAPPhIRE model for representing complex systems (also from the biological domain). We use an electric buzzer to illustrate and compare the efficacy of this model in explaining complex systems with that of a well-known model from literature. The use of multiple-instance SAPPhIRE model instances seems to provide a more comprehensive explanation of a complex system, which includes elements of description that are not present in other models, providing an indication as to which elements might have been missing from a given description. The proposed model is implemented in a web-based tool called Idea-Inspire 4.0, a brief introduction of which is also provided.


Author(s):  
Rober Choate ◽  
Kevin Schmaltz

Mechanical Engineering students at Western Kentucky University (WKU) are given instruction and must demonstrate their abilities to execute design projects during each of their four years of study. The features and goals of these projects are governed by a Professional Plan, which assures that graduates of the program have experienced key areas of the engineering profession and shown the ability to perform in an acceptable professional manner. The Engineering Design component of the Professional Plan is the focal point of the professional experiences. For students to be able to execute a structured approach to solving problems with an appreciation for the art of engineering, they must experience meaningful projects that expand and challenge their capabilities. WKU ME freshmen individually create physical devices with little engineering science, developing a sense of the manufacturing skills required for realistic designs. Sophomore students execute a team design project with more technical expectations, and also individually complete a design and build project that continues from their freshman project. As juniors, the team design experience is extended to an external audience with greater technical rigor, and additionally student teams implement the ASME Student Design Competition (ASME SDC) as their design and build project. The goal is for seniors to be prepared to implement an industry-based design and build project subject to realistic constraints and customer needs. The implementation of the Engineering Design Component has evolved over the past four years guided by ongoing assessment of both course outcomes and program outcomes, internal and external evaluations of the design project outcomes, and the maturing status of the program facilities and curriculum. One strength of the Professional Plan framework is the ability to build upon previous coursework, assess student progress, and adjust course activities based on prior assessment results to assure that graduates are capable of practicing as engineers. This paper will detail a sustainable model for implementing the design process across the curriculum, with the basis for selecting projects, managing the efforts of student teams, and providing effective feedback. In addition to the engineering design component, the use of professional communications and professional tools are also structured within the design projects.


Author(s):  
David S. Strong

Professional engineers in industry not only have to work frequently with those from other disciplines and professions, but often have to develop working skills and knowledge beyond their original discipline due to the requirements of their employment. Similarly, engineering design skills are also important attributes for professional engineers, particularly those working in product, process or system development. Surveys continue to suggest that industry perceives most engineering graduates, although technically competent, have minimal practical design skills, and lack the complimentary professional skills that are required for working successfully in the shared workplace. In an effort to address the need for both multidisciplinary and design engineering skills, a multidisciplinary design stream is under development at Queen’s University. Beginning with a course designed to develop a broad range of fundamental engineering design knowledge, professional skills and attitudes, the stream will continue to enhance the student’s capability through a full year experience working on industry based design projects in multidisciplinary teams. The first elective offering of the design engineering fundamentals course attracted students from nine of ten disciplines. The project phase of the stream will be first offered in 2005-2006 to those students completing the fundamentals course. This paper will therefore discuss the multidisciplinary design stream as a work in progress.


Sign in / Sign up

Export Citation Format

Share Document