scholarly journals PENGENALAN CITRA RAMBU LALU LINTAS MENGGUNAKAN EKSTRAKSI FITUR MOMENWARNA DAN K-NEAREST NEIGHBOR

Author(s):  
Rusma Eko Fiddy Rizarta ◽  
Donny Avianto

The traffic signs are signs with specific shape and symbols, letters, numbers, or words which have the aim to warn or inform the road users. However, there are many road users who are not aware of the meaning of each signs. In this research, we develop an application which can classify a road sign image into three classes, priority four-way crossroad, do-not-park sign, and follow-this-road sign. Initially, the system will do preprocessing step such as grays calling, histogram equalization, and input image segmentation. Next, the feature extraction step will be conducted, namely the spatial moment feature extraction, normalized centering, and color statistics. Lastly, the feature representation from both extraction methods will be used to classify the image using K-nearest neighbor. Experiment result shows that the combination of both feature extraction methods gives promising result. From 21 training images and 15 testing images, the system can recognize the traffic signs with 100% accuracy with K=3, 86.6% with K=5, and 86.6% with K=7. Rambu lalu lintas merupakan salah satu alat perlengkapan jalan dalam bentuk tertentu yang memuat lambang, huruf, angka, kalimat yang digunakan untuk memberikan perintah, larangan, peringatan dan petunjuk bagi pengguna jalan agar tertib berlalu lintas. Namun, banyak di antara pengguna jalan yang belum mengetahui arti dari setiap rambu lalu lintas yang terpasang.Pada penelitian ini, dibuatlah suatu aplikasi yang mampu melakukan klasifikasi citra rambu ke dalam 3 kelas yaitu: peringatan simpang empat prioritas, larangan parkir dan perintah memasuki jalur atau lajur yang ditunjuk. Mula-mula sistem akan melakukan prapemrosesan seperti seperti: grayscalling, histogram equalization, dan segmentasi pada citra input. Selanjutnya, tahap ekstraksi ciri akan dilakukan pada citra hasil pra-pemrosesan. Adapun metode ekstraksi ciri yang digunakan pada penelitian kali ini adalah ekstraksi fitur momen spasial dan pusat ternormalisai (momen) dan ekstraksi fitur statistika warna (warna). Terakhir, nilai fitur yang dihasilkan oleh kedua metode tersebut akan diklasifikasi mengguakan K-Nearest Neighbor. Hasil uji coba menunjukkan bahwa metode ekstraksi fitur gabungan momen-warna memberikan hasil yang menjanjikan. Dari 21 citra latih dan 15 citra uji yang digunakan, sistem mampu mengenali rambu dengan tepat 100% pada K=3 , 86,6% pada K=5, dan 86,6% pada K=7. 

2016 ◽  
Vol 2 (3) ◽  
pp. 35
Author(s):  
Cemil Altın ◽  
Orhan Er

Objective:In this study we will get EMG signals from arm for different elbow gestures, than filtering the signal and later classification the signal. The reason for doing is that, EMG signals are used for many rehabilitation and assistive prostheses of paralyzed or injured people. Methods:Filtering a biological signal is the key point for these type studies. Filtering the EMG signals needed and starts with the elimination of the 50 Hz mains supply noise. After filtering the signal, feature extraction will be applied for both wrist flexion and wrist extension cases. There are many feature extraction methods for time and frequency domain. After feature extraction, classification of hand movements will be studied using extracted features. Classification is made using K Nearest Neighbor algorithm. The dataset used in this study is acquired by the EMG signal acquisition tool and belong to us. Results:90 % accuracy performance is obtained by K Nearest Neighbor algorithm purposed signal classification. Conclusion:This system is capable of conducting the classification process with a good performance to biomedical studies. So,this structure can be helpful as machine-learning based decision support system for medical purpose.


2016 ◽  
Vol 5 (1) ◽  
pp. 35 ◽  
Author(s):  
Cemil Altın ◽  
Orhan Er

Objective:In this study we will get EMG signals from arm for different elbow gestures, than filtering the signal and later classification the signal. The reason for doing is that, EMG signals are used for many rehabilitation and assistive prostheses of paralyzed or injured people. Methods:Filtering a biological signal is the key point for these type studies. Filtering the EMG signals needed and starts with the elimination of the 50 Hz mains supply noise. After filtering the signal, feature extraction will be applied for both wrist flexion and wrist extension cases. There are many feature extraction methods for time and frequency domain. After feature extraction, classification of hand movements will be studied using extracted features. Classification is made using K Nearest Neighbor algorithm. The dataset used in this study is acquired by the EMG signal acquisition tool and belong to us. Results:90 % accuracy performance is obtained by K Nearest Neighbor algorithm purposed signal classification. Conclusion:This system is capable of conducting the classification process with a good performance to biomedical studies. So,this structure can be helpful as machine-learning based decision support system for medical purpose.


2016 ◽  
Vol 2 (3) ◽  
pp. 35
Author(s):  
Cemil Altın ◽  
Orhan Er

Objective:In this study we will get EMG signals from arm for different elbow gestures, than filtering the signal and later classification the signal. The reason for doing is that, EMG signals are used for many rehabilitation and assistive prostheses of paralyzed or injured people. Methods:Filtering a biological signal is the key point for these type studies. Filtering the EMG signals needed and starts with the elimination of the 50 Hz mains supply noise. After filtering the signal, feature extraction will be applied for both wrist flexion and wrist extension cases. There are many feature extraction methods for time and frequency domain. After feature extraction, classification of hand movements will be studied using extracted features. Classification is made using K Nearest Neighbor algorithm. The dataset used in this study is acquired by the EMG signal acquisition tool and belong to us. Results:90 % accuracy performance is obtained by K Nearest Neighbor algorithm purposed signal classification. Conclusion:This system is capable of conducting the classification process with a good performance to biomedical studies. So,this structure can be helpful as machine-learning based decision support system for medical purpose.


Author(s):  
Atul Kumar Verma ◽  
Indu Saini ◽  
Barjinder Singh Saini

In the chapter, dynamic time domain features are extracted in the proposed approach for the accurate classification of electrocardiogram (ECG) heartbeats. The dynamic time-domain information such as RR, pre-RR, post-RR, ratio of pre-post RR, and ratio of post-pre RR intervals to be extracted from the ECG beats in proposed approach for heartbeat classification. These four extracted features are combined and fed to k-nearest neighbor (k-NN) classifier with tenfold cross-validation to classify the six different heartbeats (i.e., normal [N], right bundle branch block [RBBB], left bundle branch block [LBBB], atrial premature beat [APC], paced beat [PB], and premature ventricular contraction[PVC]). The average sensitivity, specificity, positive predictivity along with overall accuracy is obtained as 99.77%, 99.97%, 99.71%, and 99.85%, respectively, for the proposed classification system. The experimental result tells that proposed classification approach has given better performance as compared with other state-of-the-art feature extraction methods for the heartbeat characterization.


2016 ◽  
Vol 2 (3) ◽  
pp. 35 ◽  
Author(s):  
Cemil Altın ◽  
Orhan Er

Objective:In this study we will get EMG signals from arm for different elbow gestures, than filtering the signal and later classification the signal. The reason for doing is that, EMG signals are used for many rehabilitation and assistive prostheses of paralyzed or injured people. Methods:Filtering a biological signal is the key point for these type studies. Filtering the EMG signals needed and starts with the elimination of the 50 Hz mains supply noise. After filtering the signal, feature extraction will be applied for both wrist flexion and wrist extension cases. There are many feature extraction methods for time and frequency domain. After feature extraction, classification of hand movements will be studied using extracted features. Classification is made using K Nearest Neighbor algorithm. The dataset used in this study is acquired by the EMG signal acquisition tool and belong to us. Results:90 % accuracy performance is obtained by K Nearest Neighbor algorithm purposed signal classification. Conclusion:This system is capable of conducting the classification process with a good performance to biomedical studies. So,this structure can be helpful as machine-learning based decision support system for medical purpose.


2018 ◽  
Author(s):  
I Wayan Agus Surya Darma

Balinese character recognition is a technique to recognize feature or pattern of Balinese character. Feature of Balinese character is generated through feature extraction process. This research using handwritten Balinese character. Feature extraction is a process to obtain the feature of character. In this research, feature extraction process generated semantic and direction feature of handwritten Balinese character. Recognition is using K-Nearest Neighbor algorithm to recognize 81 handwritten Balinese character. The feature of Balinese character images tester are compared with reference features. Result of the recognition system with K=3 and reference=10 is achieved a success rate of 97,53%.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1274
Author(s):  
Daniel Bonet-Solà ◽  
Rosa Ma Alsina-Pagès

Acoustic event detection and analysis has been widely developed in the last few years for its valuable application in monitoring elderly or dependant people, for surveillance issues, for multimedia retrieval, or even for biodiversity metrics in natural environments. For this purpose, sound source identification is a key issue to give a smart technological answer to all the aforementioned applications. Diverse types of sounds and variate environments, together with a number of challenges in terms of application, widen the choice of artificial intelligence algorithm proposal. This paper presents a comparative study on combining several feature extraction algorithms (Mel Frequency Cepstrum Coefficients (MFCC), Gammatone Cepstrum Coefficients (GTCC), and Narrow Band (NB)) with a group of machine learning algorithms (k-Nearest Neighbor (kNN), Neural Networks (NN), and Gaussian Mixture Model (GMM)), tested over five different acoustic environments. This work has the goal of detailing a best practice method and evaluate the reliability of this general-purpose algorithm for all the classes. Preliminary results show that most of the combinations of feature extraction and machine learning present acceptable results in most of the described corpora. Nevertheless, there is a combination that outperforms the others: the use of GTCC together with kNN, and its results are further analyzed for all the corpora.


2018 ◽  
Vol 35 (16) ◽  
pp. 2757-2765 ◽  
Author(s):  
Balachandran Manavalan ◽  
Shaherin Basith ◽  
Tae Hwan Shin ◽  
Leyi Wei ◽  
Gwang Lee

AbstractMotivationCardiovascular disease is the primary cause of death globally accounting for approximately 17.7 million deaths per year. One of the stakes linked with cardiovascular diseases and other complications is hypertension. Naturally derived bioactive peptides with antihypertensive activities serve as promising alternatives to pharmaceutical drugs. So far, there is no comprehensive analysis, assessment of diverse features and implementation of various machine-learning (ML) algorithms applied for antihypertensive peptide (AHTP) model construction.ResultsIn this study, we utilized six different ML algorithms, namely, Adaboost, extremely randomized tree (ERT), gradient boosting (GB), k-nearest neighbor, random forest (RF) and support vector machine (SVM) using 51 feature descriptors derived from eight different feature encodings for the prediction of AHTPs. While ERT-based trained models performed consistently better than other algorithms regardless of various feature descriptors, we treated them as baseline predictors, whose predicted probability of AHTPs was further used as input features separately for four different ML-algorithms (ERT, GB, RF and SVM) and developed their corresponding meta-predictors using a two-step feature selection protocol. Subsequently, the integration of four meta-predictors through an ensemble learning approach improved the balanced prediction performance and model robustness on the independent dataset. Upon comparison with existing methods, mAHTPred showed superior performance with an overall improvement of approximately 6–7% in both benchmarking and independent datasets.Availability and implementationThe user-friendly online prediction tool, mAHTPred is freely accessible at http://thegleelab.org/mAHTPred.Supplementary informationSupplementary data are available at Bioinformatics online.


2012 ◽  
Vol 9 (4) ◽  
pp. 1645-1661 ◽  
Author(s):  
Ray-I Chang ◽  
Shu-Yu Lin ◽  
Jan-Ming Ho ◽  
Chi-Wen Fann ◽  
Yu-Chun Wang

Image retrieval has been popular for several years. There are different system designs for content based image retrieval (CBIR) system. This paper propose a novel system architecture for CBIR system which combines techniques include content-based image and color analysis, as well as data mining techniques. To our best knowledge, this is the first time to propose segmentation and grid module, feature extraction module, K-means and k-nearest neighbor clustering algorithms and bring in the neighborhood module to build the CBIR system. Concept of neighborhood color analysis module which also recognizes the side of every grids of image is first contributed in this paper. The results show the CBIR systems performs well in the training and it also indicates there contains many interested issue to be optimized in the query stage of image retrieval.


2019 ◽  
Vol 13 (1) ◽  
pp. 141-150
Author(s):  
Jinhwan Jang

Background: Real-time Travel Time (TT) information has become an essential component of daily life in modern society. With reliable TT information, road users can increase their productivity by choosing less congested routes or adjusting their trip schedules. Drivers normally prefer departure time-based TT, but most agencies in Korea still provide arrival time-based TT with probe data from Dedicated Short-Range Communications (DSRC) scanners due to a lack of robust prediction techniques. Recently, interest has focused on the conventional k-nearest neighbor (k-NN) method that uses the Euclidean distance for real-time TT prediction. However, conventional k-NN still shows some deficiencies under certain conditions. Methods: This article identifies the cases where conventional k-NN has shortcomings and proposes an improved k-NN method that employs a correlation coefficient as a measure of distance and applies a regression equation to compensate for the difference between current and historical TT. Results: The superiority of the suggested method over conventional k-NN was verified using DSRC probe data gathered on a signalized suburban arterial in Korea, resulting in a decrease in TT prediction error of 3.7 percent points on average. Performance during transition periods where TTs are falling immediately after rising exhibited statistically significant differences by paired t-tests at a significance level of 0.05, yielding p-values of 0.03 and 0.003 for two-day data. Conclusion: The method presented in this study can enhance the accuracy of real-time TT information and consequently improve the productivity of road users.


Sign in / Sign up

Export Citation Format

Share Document