scholarly journals ANALISIS PENGGUNAAN PREFABRICATED VERTICAL DRAINS (PVD) PADA TANAH LEMPUNG LUNAK YANG TERDAPAT LAPISAN LENSA

2020 ◽  
Vol 3 (1) ◽  
pp. 119
Author(s):  
Andreyan Prasetio ◽  
Aniek Prihatiningsih

Problem that often occurs in soft cohesive soils is settlement caused by consolidation process. If  construction activities doing when the soils has not been consolidated, settlement can occur. To accelerate  the consolidation process, soil improvement are usually do, one method of soil improvement to accelarate the consolidation process is vertical drain using prefabricated vertical drains (PVD). The soft soil layers in the field are not always continuous, sometimes found soft soil layers that have a lens layer. In this study, will discuss about the settlement and consolidation time of soft  soil layers that have a lens layer which has been improved by PVD with 1 meter distance. Infrastructure that stand on a location that is installed by PVD is taxiway and loading by Airbus A380 aircraft of 18,22ton/m2. Analysis using the 1 dimensional consolidation theory of Terzaghi. For PVD installation to a depth of 50 meters, preloading settlement of 234,80 cm with a consolidation time of  2260 days for the square pattern PVD and 1918 days for triangle pattern PVD. Post loading settlement for PVD installation depth of 50 meters by 2,50 cm. AbstrakMasalah yang sering terjadi pada tanah kohesif dan lunak adalah penurunan yang disebabkan proses konsolidasi. Penurunan dapat menyebabkan keretakan pada struktur konstruksi yang berada di atasnya. Jika suatu kegiatan konstruksi dilakukan saat tanah belum terkonsolidasi, maka konstruksi tersebut dapat mengalami penurunan.. Untuk mempercepat proses konsolidasi biasanya dilakukan perbaikan tanah, salah satu metode perbaikan tanah untuk mempercepat proses konsolidasi yaitu vertical drain dengan menggunakan prefabricated vertical drains (PVD). Lapisan tanah lunak yang terdapat di lapangan tidak selalu kontinu, terkadang ditemukan lapisan tanah lunak yang terdapat lapisan lensa. Pada penelitian ini, penulis akan membahas mengenai waktu konsolidasi yang dibutuhkan oleh lapisan tanah kohesif dan lunak yang terdapat lapisan lensa yang telah diperbaiki dengan menggunakan PVD berjarak 1 meter. Infrastruktur yang berdiri di atas lokasi yang dipasang PVD berupa taxiway dengan beban berupa pesawat Airbus A380 sebesar 18,22 ton/m2. Analisis dilakukan menggunakan teori konsolidasi 1 dimensi Terzaghi. Untuk pemasangan PVD hingga kedalaman 50 meter diperoleh penurunan pra pembebanan sebesar 234,80 cm dengan waktu konsolidasi selama 2260 hari untuk pemasangan PVD pola persegi dan selama 1918 hari untuk pola segitiga . Penurunan pasca pembebanan untuk pemasangan PVD hingga kedalaman 50 meter sebesar 2,5 cm.

2021 ◽  
Vol 4 (2) ◽  
pp. 417
Author(s):  
Erika Oktavia ◽  
Andryan Suhendra

Over time, there has been more development, this has made less land for development. However, development still has to go on. One of the infrastructure that is currently needed is toll roads to increase the efficiency of movement from one place to another. One of the serious problems at this time is that many soils have small bearing capacity and large settlement, for example, such as soft soil. In order for this model soil to have a stable condition, the solution is loaded so that the pore water from the soil can be pressed out. However, it takes a long time to achieve the desired settlement, here the prefabricated vertical drain method is used to accelerate the settlement. Prefabricated vertical drain here makes the distance between the pore water that was previously thick as soft soil, to half the distance between prefabricated vertical drains. The analysis calculation in this thesis uses the one dimensional consolidation method, the finite element method, and the asaoka method as the calculation of the actual results from field data. The results of this study found that the difference in the degree of consolidation between the theoretical calculations and the Asaoka method was 3.4303%.


2021 ◽  
Vol 15 (1) ◽  
pp. 310-319
Author(s):  
Nadarasa Kuganeswaran ◽  
Afikah Rahim ◽  
Nazri Ali

Background: Constructing on soft ground is one of the challenges of geotechnical engineering. The unpredictable behaviour and characteristics of soft soil can cause much damage resulting in high maintenance costs in the post-construction phase. Objective: The purpose of this study is to analyse the consolidation process and ground improvement method using surcharge and a prefabricated vertical drain by measuring the accuracy of the prediction settlement value with the actual site settlement results. Methods: An effective ground improvement method is the application of a surcharge and prefabricated vertical drains (PVDs). Various methods can be used to predict the settlement effectively, one such method being PLAXIS 3D simulation. A case study on ground improvement works was selected for this research, where PVDs were constructed and implemented at the site. A few undisturbed samples were collected from the site to generate the parameters based on the lab test conducted in the simulation process. This parameter was carefully studied and representing the principal input for the 3D model, which is generated and represents the actual ground improvement method for the selected case study. The analysis was performed using a borehole and soft soil model to generate the diagram. The prediction settlement value was generated from the PLAXIS 3D analysis as the baseline comparing to the actual results. The factors that influence the settlement value, such as the length and spacing of the prefabricated vertical drain, construction method, and soil characteristics, are also discussed. Results: A predicted settlement of 2553 mm was generated by the simulation, while the actual settlement outcome at the site was 2096 mm, a difference of 457 mm, and a prediction accuracy of 82.1%. Conclusion: The study found that the combination of surcharge and prefabricated vertical drain in the ground improvement worked well. Also, discussed were the factors that influenced the accuracy of the prediction and the site results.


2021 ◽  
Vol 7 (3) ◽  
pp. 299
Author(s):  
Galuh Chrismaningwang ◽  
Hary Christady Hardiyatmo ◽  
Agus Darmawan Adi ◽  
Teuku Faisal Fathani

One of the most common soft soil enhancement techniques used to expedite the consolidation time significantly is Prefabricated Vertical Drains (PVD). This technique needs a sufficient discharge capacity value because it primarily functions as a drainage channel. The deformation of PVD is considered as one of the primary factors which affect discharge capacity. Therefore, this research determined the influence of upper-side deformation on PVD's discharge capacity (qw) using a specific design apparatus known as ASTM D4716, which manages the determination of transmissivity and flow rate at the longitudinal direction of geosynthetics. Furthermore, two PVD samples with dimensions of 3 and 4 mm thickness, 100 mm width, and 1000 mm length were examined under straight and buckled conditions. Stepwise confining pressures from 50 to 200 kPa were subjected to the samples under hydraulic gradients with values of 0.2, 0.5, and 1.0. The results showed that samples with greater thickness had higher discharge capacity, which significantly reduced in the lower hydraulic gradient. The deformation on the upper side of PVD induced a decrease of discharge capacity by approximately 13-16%, which led to a delay in the consolidation time. The discharge capacity values obtained from the experiments were employed as parameters in a time factor ratio of Th,w/Th. The analysis results show that the buckled PVD has a more considerable consolidation time due to the increase in the Th,w/Th ratio, with a discharge capacity value below 10-4 m3/s. It can be concluded that the deformation in the form of buckled conditions on the upper side of PVD had a considerable impact on PVD effectiveness.


2011 ◽  
Vol 57 (1) ◽  
pp. 17-25 ◽  
Author(s):  
K. Binder

Abstract The article presents the application of finite element method for estimating settlements of road embankments founded on the soil reinforced with vertical drains and preloading method. The idea of the method was the transition from the solution of one-dimensional consolidation proposed for two-dimensional solution, while maintaining the same consolidation time and comparison with results obtained from measurements settlements of road embankment which is a part of planned Gdansk Southern Ring Road near Przejazdowo site.


2020 ◽  
Vol 3 (4) ◽  
pp. 1137
Author(s):  
Christian Eka Putra ◽  
Chaidir Anwar Makarim

The existence of soft soil is one of the problems in the field of construction. Soft soil is soil that has high water content and low carrying capacity. In the case of this toll road, soil investigation at the site shows that the subgrade in the toll road planning is soft clay soil to a depth of 32 meters so that soil improvement is needed. High landfill built on soft subgrade without reinforcement will experience landslides. So it is necessary to strengthen the landfill and repair the subgrade to prevent road slides. The soil improvement methods in use are vacuum preloading and Prefabricated Vertical Drain with the vacuum functioning as an additional load. In addition to accelerating the consolidation process, the vacuum can also reduce the height of the embankment needed to achieve the desired planned road elevation. Strengthening with geotextile is also carried out on the landfill with a height of 5.94 meters so that there is no landslide on the fill. Using soil improvement methods such as vacuum preloading and prefabricated vertical drain will increase the bearing capacity of the soil so that differences in bearing capacity occur before and after repair. AbstrakKeberadaan tanah lunak menjadi salah satu masalah dalam bidang konstruksi. Tanah lunak adalah tanah yang memiliki kadar air yang tinggi dan daya dukung yang rendah. Pada kasus jalan tol ini, penyelidikan tanah di lokasi menunjukan bahwa tanah dasar pada perencanaan jalan tol merupakan tanah lempung lunak hingga kedalaman 32 meter sehingga dibutuhkan perbaikan tanah dasar. Timbunan tinggi yang dibangun di atas tanah dasar lunak tanpa perkuatan akan mengalami kelongsoran. Sehingga diperlukan perkuatan timbunan dan perbaikan tanah dasar untuk mencegah kelongsoran jalan. Metode perbaikan tanah yang digunakan adalah vacuum preloading dan Prefabricated Vertical Drain dengan vacuum berfungsi sebagai beban tambahan. Selain mempercepat proses penurunan, vacuum juga dapat mengurangi tinggi timbunan yang dibutuhkan untuk mencapai elevasi jalan rencana yang diinginkan. Perkuatan dengan geotextile juga dilakukan pada timbunan dengan tinggi yang mencapai 5.94 meter supaya tidak terjadi kelongsoran pada timbunan tersebut. Dengan menggunakan metode perbaikan tanah berupa vacuum preloading dan prefabricated vertical drain akan meningkatkan daya dukung tanah sehingga akan diketahui perbedaan daya dukung yang terjadi sebelum dan sesudah diperbaiki.


Author(s):  
Phan Huy Dong

Vacuum consolidation preloading method (VCM) has been widely adopted as an effective solution for soft soil improvement over the world. Recently, VCM has been successfully applied for improving the geotechnical properties of dredged mud, which is normally dumped at reclamation area by hydraulic pumping. However, it has been also reported that application of VCM for treatment of the dredged mud has been failed in some particular cases. The failures are mainly caused by clogging problem in vertical drains due to fine-grained soils that reduces the drainage efficiency of drainage system. To address this issue, a series of model tests have been conducted to investigate the performances of vertical drains among prefabricated vertical drain, sand drain and filter pipe. As the goal, the performances of types of the vertical drain solutions are analyzed based on the monitoring data of settlement, influencing zone surrounding the vertical drains. The test results reveal that sand drain shows the best performance among the others. In addition, the clogging problem is clearly shown in case of PVD. Keywords: dredging slurry; vacuum consolidation method; model test; PVD; filter pipe; sand drain.


2013 ◽  
Vol 275-277 ◽  
pp. 1398-1402
Author(s):  
Yong Hua Cao ◽  
Chang Quan Yin

Ultra-soft soil improvement projects are new trend in present China because of the limitation of construction period. Technical problems occur when traditional vacuum preloading method is applied for ultra-soft soil. This paper firstly gave an analysis of the main technical problems which include construction channel problems for building materials and workers, portion division problems of project area, installation problems of prefabricated vertical drains and formation problems of horizontal drainage cushion. Then solutions for these problems were presented. Based on the solutions and traditional vacuum preloading method, a new method for ultra-soft soil improving was put forward. A typical application of this new method was give at the end of this paper.


1993 ◽  
Vol 30 (2) ◽  
pp. 308-318 ◽  
Author(s):  
E. Koda ◽  
A. Szymanski ◽  
W. Wolski

The results of field and laboratory investigations performed on two test sites located on organic soils in northwestern Poland are presented. Comprehensive investigations comprising observations at four test embankments and a laboratory investigation were carried out to study the influence of vertical drains on the consolidation process in organic subsoil and the behaviour of Geodrains-type strip drains in organic soils. It was shown that vertical strip drains may effectively improve the bearing capacity of amorphous peat and gyttja for stage-constructed embankments. However, it has been observed that there is a significant decrease in discharge capacity of Geodrains during embankment construction, depending on the type of drain filters (paper or polyester). Nevertheless, the vertical drain effectiveness was found to be quite satisfactory because the observed decrease of discharge capacity has practically no influence on consolidation rate. It was also detected that the buckling effect, probably owing to large horizontal displacements, does not significantly affect the discharge capacity of drains. Moreover, it is shown that there is a significant difference in pore-pressure distribution under embankments with and without vertical drains. As a result of the vertical drain installation under part of the slopes, a significant decrease in the horizontal displacements took place. Key words : consolidation, soil improvement, organic soils, vertical drains, field and laboratory tests.


1998 ◽  
Vol 35 (4) ◽  
pp. 666-667 ◽  
Author(s):  
H P Hong ◽  
J Q Shang

Prefabricated vertical drains are often used to accelerate the consolidation and to gain strength in soft clayey soils. The consolidation process depends on several uncertain parameters including the coefficients of consolidation and coefficients of permeability in vertical and horizontal directions and the discharge capacity of the vertical drains. A sensitivity analysis of the degree of consolidation to these uncertain parameters is presented for clayey deposits. Results of the analysis suggest that the most important uncertain parameter that affects the consolidation process is the horizontal coefficient of consolidation. The implication of this uncertain parameter in the design of prefabricated vertical drains for soil improvement is discussed. Two approaches are proposed for selecting drain spacing employing a design value of the horizontal coefficient of consolidation. One of the approaches is probability based and the other is minimum expected cost based.Key words: consolidation, prefabricated vertical drains, drain spacing, probability, expected cost, optimal design.


Sign in / Sign up

Export Citation Format

Share Document