Time sorting filtering algorithm for deep space mission planning

Author(s):  
D.X. Chen ◽  
R. Xu ◽  
P.Y. Cui
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
J. N. Chung ◽  
Jun Dong ◽  
Hao Wang ◽  
S. R. Darr ◽  
J. W. Hartwig

AbstractThe extension of human space exploration from a low earth orbit to a high earth orbit, then to Moon, Mars, and possibly asteroids is NASA’s biggest challenge for the new millennium. Integral to this mission is the effective, sufficient, and reliable supply of cryogenic propellant fluids. Therefore, highly energy-efficient thermal-fluid management breakthrough concepts to conserve and minimize the cryogen consumption have become the focus of research and development, especially for the deep space mission to mars. Here we introduce such a concept and demonstrate its feasibility in parabolic flights under a simulated space microgravity condition. We show that by coating the inner surface of a cryogenic propellant transfer pipe with low-thermal conductivity microfilms, the quenching efficiency can be increased up to 176% over that of the traditional bare-surface pipe for the thermal management process of chilling down the transfer pipe. To put this into proper perspective, the much higher efficiency translates into a 65% savings in propellant consumption.


Algorithms ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 231
Author(s):  
Xiangyu Long ◽  
Shufan Wu ◽  
Xiaofeng Wu ◽  
Yixin Huang ◽  
Zhongcheng Mu

This paper presents a space mission planning tool, which was developed for LEO (Low Earth Orbit) observation satellites. The tool is focused on a two-phase planning strategy with clustering preprocessing and mission planning, where an improved clustering algorithm is applied, and a hybrid algorithm that combines the genetic algorithm with the simulated annealing algorithm (GA–SA) is given and discussed. Experimental simulation studies demonstrate that the GA–SA algorithm with the improved clique partition algorithm based on the graph theory model exhibits higher fitness value and better optimization performance and reliability than the GA or SA algorithms alone.


2007 ◽  
Vol 95 (10) ◽  
pp. 1976-1985 ◽  
Author(s):  
Ron Schulze ◽  
Robert E. Wallis ◽  
Robert K. Stilwell ◽  
Weilun Cheng

Author(s):  
David A. Artis ◽  
Brian K. Heggestad ◽  
Christopher J. Krupiarz ◽  
M. Annette Mirantes ◽  
J. Doug Reid

Sign in / Sign up

Export Citation Format

Share Document