scholarly journals Transport phenomenon in a jet type mold cooling pipe

Author(s):  
H. Kawahara ◽  
T. Nishimura
2019 ◽  
Vol 6 (04) ◽  
Author(s):  
RAM PAL ◽  
H C SHARMA ◽  
M IMTIYAZ

The modern theme of agriculture is not only to increase production but also to minimize undesirable environmental effects. Leaching of surface-applied fertilizer is the major source of groundwater pollution. Nitrogenous fertilizers are the most popular among the Indian farmers, which on leaching reach the groundwater in different forms (NH4-N, NO3-N, etc). NO3-N leaches faster than other types, remains in-reactive in groundwater, moves with the velocity of groundwater and contaminates it. Contamination arises when NO3-N accumulates in groundwater and consumed in high amount by humans and animals, may result in adverse health effects. For the study of contaminant transport phenomenon in porous medium, a general convection dispersion equation is used, in which dispersion coefficient is one of the primary parameters necessary to be determined for a particular soil. Keeping it in view a study was conducted to assess different available techniques to determine the dispersion coefficient with the help of soil columns having silty loam soil as soil medium. The value of the dispersion coefficient obtained for silty loam soil, by this method was equal to 0.00576 m2.


2001 ◽  
Vol 40 (9) ◽  
pp. 797-803 ◽  
Author(s):  
X.F Peng ◽  
Y.J Huang ◽  
D.J Lee

2005 ◽  
Author(s):  
H. K. Cho ◽  
D. U. Seo ◽  
M. O. Kim ◽  
G. C. Park

In the HTGR (High Temperature Gas Cooled Reactor), the Reactor Cavity Cooling System (RCCS) is equipped to remove the heat transferred from the reactor vessel to the structure of the containment. The function of the RCCS is to dissipate the heat from the reactor cavity during normal operation including shutdown. The system also removes the decay heat during the loss of forced convection (LOFC) accident. A new concept of the water pool type RCCS was proposed at Seoul National University. The system mainly consists of two parts, water pool located between the containment and reactor vessel and five trains of air cooling system installed in the water pool. In normal operations, the heat loss from the reactor vessel is transferred into the water pool via cavity and it is removed by the forced convection of air flowing through the cooling pipes. During the LOFC accident, the after heat is passively removed by the water tank without the forced convection of air and the RCCS water pool is designed to provide sufficient passive cooling capacity of the after heat removal for three days. In the present study, experiments and numerical calculations using CFX5.7 for the water pool and cooling pipe were performed to investigate the heat transfer characteristics and evaluate the heat transfer coefficient model of the MARS-GCR (Multi-dimensional Analysis of Reactor Safety for Gas Cooled Reactor Analysis) which was developed for the safety analysis of the gas cooled reactor. From the results of the experiments and CFX calculations, heat transfer coefficients inside the cooling pipe were calculated and those were used for the assessment for the heat transfer coefficient model of the MARS-GCR.


2009 ◽  
Vol 39 (2) ◽  
pp. 280-282 ◽  
Author(s):  
M. Y. Nadeem ◽  
Asim Javed ◽  
M. F. Wasiq

Sign in / Sign up

Export Citation Format

Share Document