scholarly journals AN ONLINE-BASED VISUAL FRAMEWORK OF 3D POSITIONING DATA WITH WIRELESS SIGNAL FOR BURIED PERSONS

Author(s):  
HYOUNSEOK MOON ◽  
WOOSIK LEE
2020 ◽  
Vol 79 (1) ◽  
pp. 47-57
Author(s):  
O. G. Viunytskyi ◽  
A. V. Totsky ◽  
Karen O. Egiazarian

Author(s):  
Vanessa B. Leffler ◽  
Sascha Ehlert ◽  
Beate Förster ◽  
Martin Dulle ◽  
Stephan Förster

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1178
Author(s):  
Bo Sun ◽  
Bo Tan ◽  
Wenbo Wang ◽  
Elena Simona Lohan

The 5G network is considered as the essential underpinning infrastructure of manned and unmanned autonomous machines, such as drones and vehicles. Besides aiming to achieve reliable and low-latency wireless connectivity, positioning is another function provided by the 5G network to support the autonomous machines as the coexistence with the Global Navigation Satellite System (GNSS) is typically supported on smart 5G devices. This paper is a pilot study of using 5G uplink physical layer channel sounding reference signals (SRSs) for 3D user equipment (UE) positioning. The 3D positioning capability is backed by the uniform rectangular array (URA) on the base station and by the multiple subcarrier nature of the SRS. In this work, the subspace-based joint angle-time estimation and statistics-based expectation-maximization (EM) algorithms are investigated with the 3D signal manifold to prove the feasibility of using SRSs for 3D positioning. The positioning performance of both algorithms is evaluated by estimation of the root mean squared error (RMSE) versus the varying signal-to-noise-ratio (SNR), the bandwidth, the antenna array configuration, and multipath scenarios. The simulation results show that the uplink SRS works well for 3D UE positioning with a single base station, by providing a flexible resolution and accuracy for diverse application scenarios with the support of the phased array and signal estimation algorithms at the base station.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ajay Sharma ◽  
Rajinder Singh Kaler

Abstract The optical wireless communication has been designed by developing a model with the support of MATLAB simulator using Simulink where channel considered to be a free space. In this model, Additive White Gaussian Noise (AWGN) channel has used to analyze bit error rate (BER) and power loss of optical wireless signal at receiver. The consequence due to turbulence in atmosphere of free space on transmitted signal has examined. The BER and signal power have extremely ruined on rigorous atmospheric unstable condition even for a short distance in an optical wireless channel. The BER of less than 10−3 has been achieved for free space optical communication considered to be an excellent BER for FSO.


Sign in / Sign up

Export Citation Format

Share Document