scholarly journals Identification of new road segments using a modified version of the k-means algorithm

2014 ◽  
Author(s):  
G. Greco ◽  
C. Lucianaz ◽  
E. Vittaz ◽  
S. Bertoldo ◽  
O. Rorato ◽  
...  
Keyword(s):  
Author(s):  
Yuji KAMIYA ◽  
Toru NAGURA ◽  
Shigeki KAWAI ◽  
Tsuneo NAKATA

2020 ◽  
Vol 16 (4) ◽  
pp. 2659-2666 ◽  
Author(s):  
Jing Qiu ◽  
Lei Du ◽  
Dongwen Zhang ◽  
Shen Su ◽  
Zhihong Tian

Computing ◽  
2020 ◽  
Vol 102 (11) ◽  
pp. 2333-2360
Author(s):  
Tarique Anwar ◽  
Chengfei Liu ◽  
Hai L. Vu ◽  
Md. Saiful Islam ◽  
Dongjin Yu ◽  
...  

Author(s):  
Jens Alm ◽  
Alexander Paulsson ◽  
Robert Jonsson

There is a growing maintenance debt of ageing and critical infrastructures in many municipalities in European welfare states. In this article, we use the multidimensional concept of local capacity as a point of departure to analyse how and in what ways Swedish municipalities work with the routine maintenance of infrastructures, including municipal road networks as well as water and sewage systems. For the road networks, maintenance is generally outsourced to contractors and there is also a large degree of tolerance for various standards on different road segments within and between the municipalities. Less used road segments are not as prioritised as those with heavy traffic. For the water and sewage systems, in-house technical capacity is needed as differences in water quality are not tolerated. Economies of scale mean that in-house capacity is translated into the creation of inter-municipal bodies. As different forms of capacities tend to reinforce each other, municipal capacity builds up over time in circular movements. These results add knowledge to current research by pointing to the ways municipalities are overcoming a run-to-failure mentality by building capacity to pay off the infrastructural maintenance debt.


Author(s):  
Athanasios I. Salamanis ◽  
George A. Gravvanis ◽  
Christos K. Filelis-Papadopoulos ◽  
Dimitrios Michail

Data ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 1 ◽  
Author(s):  
John Sospeter ◽  
Di Wu ◽  
Saajid Hussain ◽  
Tesfanesh Tesfa

Mobile network topology changes dynamically over time because of the high velocity of vehicles. Therefore, the concept of the data dissemination scheme in a VANET environment has become an issue of debate for many research scientists. The main purpose of VANET is to ensure passenger safety application by considering the critical emergency message. The design of the message dissemination protocol should take into consideration effective data dissemination to provide a high packet data ratio and low end-to-end delay by using network resources at a minimal level. In this paper, an effective and efficient adaptive probability data dissemination protocol (EEAPD) is proposed. EEAPD comprises a delay scheme and probabilistic approach. The redundancy ratio (r) metric is used to explain the correlation between road segments and vehicles’ density in rebroadcast probability decisions. The uniqueness of the EEAPD protocol comes from taking into account the number of road segments to decide which nodes are suitable for rebroadcasting the emergency message. The last road segment is considered in the transmission range because of the probability of it having small vehicle density. From simulation results, the proposed protocol provides a better high-packet delivery ratio and low-packet drop ratio by providing better use of the network resource within low end-to-end delay. This protocol is designed for only V2V communication by considering a beaconless strategy. the simulations in this study were conducted using Ns-3.26 and traffic simulator called “SUMO”.


2018 ◽  
Vol 29 ◽  
pp. 81-93 ◽  
Author(s):  
Mahmoud Ezzat ◽  
Mahmoud Sakr ◽  
Rania Elgohary ◽  
Mohammed Essam Khalifa
Keyword(s):  

2022 ◽  
Vol 13 (1) ◽  
pp. 1-21
Author(s):  
Hui Luo ◽  
Zhifeng Bao ◽  
Gao Cong ◽  
J. Shane Culpepper ◽  
Nguyen Lu Dang Khoa

Traffic bottlenecks are a set of road segments that have an unacceptable level of traffic caused by a poor balance between road capacity and traffic volume. A huge volume of trajectory data which captures realtime traffic conditions in road networks provides promising new opportunities to identify the traffic bottlenecks. In this paper, we define this problem as trajectory-driven traffic bottleneck identification : Given a road network R , a trajectory database T , find a representative set of seed edges of size K of traffic bottlenecks that influence the highest number of road segments not in the seed set. We show that this problem is NP-hard and propose a framework to find the traffic bottlenecks as follows. First, a traffic spread model is defined which represents changes in traffic volume for each road segment over time. Then, the traffic diffusion probability between two connected segments and the residual ratio of traffic volume for each segment can be computed using historical trajectory data. We then propose two different algorithmic approaches to solve the problem. The first one is a best-first algorithm BF , with an approximation ratio of 1-1/ e . To further accelerate the identification process in larger datasets, we also propose a sampling-based greedy algorithm SG . Finally, comprehensive experiments using three different datasets compare and contrast various solutions, and provide insights into important efficiency and effectiveness trade-offs among the respective methods.


2017 ◽  
Vol 43 (3) ◽  
pp. 29-42 ◽  
Author(s):  
Stanisław Gaca ◽  
Sylwia Pogodzińska

The article presents the issue of the implementation of speed management measures on regional roads, whose character requires the use of different solutions than those on national roads. The authors briefly described speed management measures, the conditions for their implementation and their effectiveness with reference to environmental conditions and road safety. The further part of the paper presents selected results of the authors' research into the speed on various road segments equipped with different speed management measures. The estimations were made as to the impact of local speed limits and traffic calming measures on drivers' behaviour in free flow conditions. This research found that the introduction of the local speed limits cause reduction in average speed and 85th percentile speed up to 11.9 km/h (14.4%) and 16.3 km/h (16.8%) respectively. These values are averaged in the tested samples. Speed reduction depends strongly on the value of the limit and local circumstances. Despite speed reduction, the share of drivers who do not comply with speed limits was still high and ranged from 43% in the case of a 70 km/h limit, up to 89% for a 40 km/h limit. As far as comprehensive traffic calming measures are concerned, results show decrease in average speed and 85th percentile speed up to 18.1 km/h and 20.8 km/h respectively. For some road segments, however, the values of average speed and 85th percentile speed increased. It confirms that the effectiveness of speed management measures is strongly determined by local circumstances.


Sign in / Sign up

Export Citation Format

Share Document