scholarly journals Towards Reading Comprehension for Long Documents

Author(s):  
Yuanxing Zhang ◽  
Yangbin Zhang ◽  
Kaigui Bian ◽  
Xiaoming Li

Machine reading comprehension has gained attention from both industry and academia. It is a very challenging task that involves various domains such as language comprehension, knowledge inference, summarization, etc. Previous studies mainly focus on reading comprehension on short paragraphs, and these approaches fail to perform well on the documents. In this paper, we propose a hierarchical match attention model to instruct the machine to extract answers from a specific short span of passages for the long document reading comprehension (LDRC) task. The model takes advantages from hierarchical-LSTM to learn the paragraph-level representation, and implements the match mechanism (i.e., quantifying the relationship between two contexts) to find the most appropriate paragraph that includes the hint of answers. Then the task can be decoupled into reading comprehension task for short paragraph, such that the answer can be produced. Experiments on the modified SQuAD dataset show that our proposed model outperforms existing reading comprehension models by at least 20% regarding exact match (EM), F1 and the proportion of identified paragraphs which are exactly the short paragraphs where the original answers locate.

Author(s):  
Zhipeng Chen ◽  
Yiming Cui ◽  
Wentao Ma ◽  
Shijin Wang ◽  
Guoping Hu

Machine Reading Comprehension (MRC) with multiplechoice questions requires the machine to read given passage and select the correct answer among several candidates. In this paper, we propose a novel approach called Convolutional Spatial Attention (CSA) model which can better handle the MRC with multiple-choice questions. The proposed model could fully extract the mutual information among the passage, question, and the candidates, to form the enriched representations. Furthermore, to merge various attention results, we propose to use convolutional operation to dynamically summarize the attention values within the different size of regions. Experimental results show that the proposed model could give substantial improvements over various state-of- the-art systems on both RACE and SemEval-2018 Task11 datasets.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jingyuan Zhang ◽  
Zequn Zhang ◽  
Zhi Guo ◽  
Li Jin ◽  
Kang Liu ◽  
...  

Target-oriented opinion words extraction (TOWE) seeks to identify opinion expressions oriented to a specific target, and it is a crucial step toward fine-grained opinion mining. Recent neural networks have achieved significant success in this task by building target-aware representations. However, there are still two limitations of these methods that hinder the progress of TOWE. Mainstream approaches typically utilize position indicators to mark the given target, which is a naive strategy and lacks task-specific semantic meaning. Meanwhile, the annotated target-opinion pairs contain rich latent structural knowledge from multiple perspectives, but existing methods only exploit the TOWE view. To tackle these issues, we formulate the TOWE task as a question answering (QA) problem and leverage a machine reading comprehension (MRC) model trained with a multiview paradigm to extract targeted opinions. Specifically, we introduce a template-based pseudo-question generation method and utilize deep attention interaction to build target-aware context representations and extract related opinion words. To take advantage of latent structural correlations, we further cast the opinion-target structure into three distinct yet correlated views and leverage meta-learning to aggregate common knowledge among them to enhance the TOWE task. We evaluate the proposed model on four benchmark datasets, and our method achieves new state-of-the-art results. Extensional experiments have shown that the pipeline method with our approach could surpass existing opinion pair extraction models, including joint methods that are usually believed to work better.


2018 ◽  
Vol 232 ◽  
pp. 02047
Author(s):  
Hui Xu ◽  
Shichang Zhang ◽  
Jie Jiang

Machine Reading Comprehension (MRC) refers to the task that aims to read the context through the machine and answer the question about the original text, which needs to be modeled in the interaction between the context and the question. Recently, attention mechanisms in deep learning have been successfully extended to MRC tasks. In general, the attention-based approach is to focus attention on a small part of the context and to generalize it using a fixed-size vector. This paper introduces a network of attention from coarse to fine, which is a multi-stage hierarchical process. Firstly, the context and questions are encoded by bi-directional LSTM RNN; Then, more accurate interaction information is obtained after multiple iterations of the attention mechanism; Finally, a cursor-based approach is used to predicts the answer at the beginning and end of the original text. Experimental evaluation of shows that the BiDMF (Bi-Directional Multi-Attention Flow) model designed in this paper achieved 34.1% BLUE4 value and 39.5% Rouge-L value on the test set.


Author(s):  
Zhaohui Li ◽  
Yue Feng ◽  
Jun Xu ◽  
Jiafeng Guo ◽  
Yanyan Lan ◽  
...  

Machine reading comprehension, whose goal is to find answers from the candidate passages for a given question, has attracted a lot of research efforts in recent years. One of the key challenge in machine reading comprehension is how to identify the main content from a large, redundant, and overlapping set of candidate sentences. In this paper we propose to tackle the challenge with Markov Decision Process in which the main content identification is formalized as sequential decision making and each action corresponds to selecting a sentence. Policy gradient is used to learn the model parameters. Experimental results based on MSMARCO showed that the proposed model, called MC-MDP, can select high quality main contents and significantly improved the performances of answer span prediction.


Author(s):  
Min Tang ◽  
Jiaran Cai ◽  
Hankz Hankui Zhuo

Multiple-choice machine reading comprehension is an important and challenging task where the machine is required to select the correct answer from a set of candidate answers given passage and question. Existing approaches either match extracted evidence with candidate answers shallowly or model passage, question and candidate answers with a single paradigm of matching. In this paper, we propose Multi-Matching Network (MMN) which models the semantic relationship among passage, question and candidate answers from multiple different paradigms of matching. In our MMN model, each paradigm is inspired by how human think and designed under a unified compose-match framework. To demonstrate the effectiveness of our model, we evaluate MMN on a large-scale multiple choice machine reading comprehension dataset (i.e. RACE). Empirical results show that our proposed model achieves a significant improvement compared to strong baselines and obtains state-of-the-art results.


2021 ◽  
Vol 11 (17) ◽  
pp. 7945
Author(s):  
Yu Dai ◽  
Yufan Fu ◽  
Lei Yang

To address the problem of poor semantic reasoning of models in multiple-choice Chinese machine reading comprehension (MRC), this paper proposes an MRC model incorporating multi-granularity semantic reasoning. In this work, we firstly encode articles, questions and candidates to extract global reasoning information; secondly, we use multiple convolution kernels of different sizes to convolve and maximize pooling of the BERT-encoded articles, questions and candidates to extract local semantic reasoning information of different granularities; we then fuse the global information with the local multi-granularity information and use it to make an answer selection. The proposed model can combine the learned multi-granularity semantic information for reasoning, solving the problem of poor semantic reasoning ability of the model, and thus can improve the reasoning ability of machine reading comprehension. The experiments show that the proposed model achieves better performance on the C3 dataset than the benchmark model in semantic reasoning, which verifies the effectiveness of the proposed model in semantic reasoning.


Author(s):  
Minghao Hu ◽  
Yuxing Peng ◽  
Zhen Huang ◽  
Xipeng Qiu ◽  
Furu Wei ◽  
...  

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.


Author(s):  
Bin Wang ◽  
Xuejie Zhang ◽  
Xiaobing Zhou ◽  
Junyi Li

The machine comprehension research of clinical medicine has great potential value in practical application, but it has not received sufficient attention and many existing models are very time consuming for the cloze-style machine reading comprehension. In this paper, we study the cloze-style machine reading comprehension in the clinical medical field and propose a Gated Dilated Convolution with Attention (GDCA) model, which consists of a gated dilated convolution module and an attention mechanism. Our model has high parallelism and is capable of capturing long-distance dependencies. On the CliCR data set, our model surpasses the present best model on several metrics and obtains state-of-the-art result, and the training speed is 8 times faster than that of the best model.


Sign in / Sign up

Export Citation Format

Share Document