scholarly journals Teaching Machines to Extract Main Content for Machine Reading Comprehension

Author(s):  
Zhaohui Li ◽  
Yue Feng ◽  
Jun Xu ◽  
Jiafeng Guo ◽  
Yanyan Lan ◽  
...  

Machine reading comprehension, whose goal is to find answers from the candidate passages for a given question, has attracted a lot of research efforts in recent years. One of the key challenge in machine reading comprehension is how to identify the main content from a large, redundant, and overlapping set of candidate sentences. In this paper we propose to tackle the challenge with Markov Decision Process in which the main content identification is formalized as sequential decision making and each action corresponds to selecting a sentence. Policy gradient is used to learn the model parameters. Experimental results based on MSMARCO showed that the proposed model, called MC-MDP, can select high quality main contents and significantly improved the performances of answer span prediction.

Author(s):  
Ming-Sheng Ying ◽  
Yuan Feng ◽  
Sheng-Gang Ying

AbstractMarkov decision process (MDP) offers a general framework for modelling sequential decision making where outcomes are random. In particular, it serves as a mathematical framework for reinforcement learning. This paper introduces an extension of MDP, namely quantum MDP (qMDP), that can serve as a mathematical model of decision making about quantum systems. We develop dynamic programming algorithms for policy evaluation and finding optimal policies for qMDPs in the case of finite-horizon. The results obtained in this paper provide some useful mathematical tools for reinforcement learning techniques applied to the quantum world.


2021 ◽  
pp. 1-16
Author(s):  
Pegah Alizadeh ◽  
Emiliano Traversi ◽  
Aomar Osmani

Markov Decision Process Models (MDPs) are a powerful tool for planning tasks and sequential decision-making issues. In this work we deal with MDPs with imprecise rewards, often used when dealing with situations where the data is uncertain. In this context, we provide algorithms for finding the policy that minimizes the maximum regret. To the best of our knowledge, all the regret-based methods proposed in the literature focus on providing an optimal stochastic policy. We introduce for the first time a method to calculate an optimal deterministic policy using optimization approaches. Deterministic policies are easily interpretable for users because for a given state they provide a unique choice. To better motivate the use of an exact procedure for finding a deterministic policy, we show some (theoretical and experimental) cases where the intuitive idea of using a deterministic policy obtained after “determinizing” the optimal stochastic policy leads to a policy far from the exact deterministic policy.


Author(s):  
Yuanxing Zhang ◽  
Yangbin Zhang ◽  
Kaigui Bian ◽  
Xiaoming Li

Machine reading comprehension has gained attention from both industry and academia. It is a very challenging task that involves various domains such as language comprehension, knowledge inference, summarization, etc. Previous studies mainly focus on reading comprehension on short paragraphs, and these approaches fail to perform well on the documents. In this paper, we propose a hierarchical match attention model to instruct the machine to extract answers from a specific short span of passages for the long document reading comprehension (LDRC) task. The model takes advantages from hierarchical-LSTM to learn the paragraph-level representation, and implements the match mechanism (i.e., quantifying the relationship between two contexts) to find the most appropriate paragraph that includes the hint of answers. Then the task can be decoupled into reading comprehension task for short paragraph, such that the answer can be produced. Experiments on the modified SQuAD dataset show that our proposed model outperforms existing reading comprehension models by at least 20% regarding exact match (EM), F1 and the proportion of identified paragraphs which are exactly the short paragraphs where the original answers locate.


Author(s):  
Zhipeng Chen ◽  
Yiming Cui ◽  
Wentao Ma ◽  
Shijin Wang ◽  
Guoping Hu

Machine Reading Comprehension (MRC) with multiplechoice questions requires the machine to read given passage and select the correct answer among several candidates. In this paper, we propose a novel approach called Convolutional Spatial Attention (CSA) model which can better handle the MRC with multiple-choice questions. The proposed model could fully extract the mutual information among the passage, question, and the candidates, to form the enriched representations. Furthermore, to merge various attention results, we propose to use convolutional operation to dynamically summarize the attention values within the different size of regions. Experimental results show that the proposed model could give substantial improvements over various state-of- the-art systems on both RACE and SemEval-2018 Task11 datasets.


2019 ◽  
Vol 1 (2) ◽  
pp. 590-610
Author(s):  
Zohreh Akbari ◽  
Rainer Unland

Sequential Decision Making Problems (SDMPs) that can be modeled as Markov Decision Processes can be solved using methods that combine Dynamic Programming (DP) and Reinforcement Learning (RL). Depending on the problem scenarios and the available Decision Makers (DMs), such RL algorithms may be designed for single-agent systems or multi-agent systems that either consist of agents with individual goals and decision making capabilities, which are influenced by other agent’s decisions, or behave as a swarm of agents that collaboratively learn a single objective. Many studies have been conducted in this area; however, when concentrating on available swarm RL algorithms, one obtains a clear view of the areas that still require attention. Most of the studies in this area focus on homogeneous swarms and so far, systems introduced as Heterogeneous Swarms (HetSs) merely include very few, i.e., two or three sub-swarms of homogeneous agents, which either, according to their capabilities, deal with a specific sub-problem of the general problem or exhibit different behaviors in order to reduce the risk of bias. This study introduces a novel approach that allows agents, which are originally designed to solve different problems and hence have higher degrees of heterogeneity, to behave as a swarm when addressing identical sub-problems. In fact, the affinity between two agents, which measures the compatibility of agents to work together towards solving a specific sub-problem, is used in designing a Heterogeneous Swarm RL (HetSRL) algorithm that allows HetSs to solve the intended SDMPs.


2008 ◽  
Vol 32 ◽  
pp. 663-704 ◽  
Author(s):  
S. Ross ◽  
J. Pineau ◽  
S. Paquet ◽  
B. Chaib-draa

Partially Observable Markov Decision Processes (POMDPs) provide a rich framework for sequential decision-making under uncertainty in stochastic domains. However, solving a POMDP is often intractable except for small problems due to their complexity. Here, we focus on online approaches that alleviate the computational complexity by computing good local policies at each decision step during the execution. Online algorithms generally consist of a lookahead search to find the best action to execute at each time step in an environment. Our objectives here are to survey the various existing online POMDP methods, analyze their properties and discuss their advantages and disadvantages; and to thoroughly evaluate these online approaches in different environments under various metrics (return, error bound reduction, lower bound improvement). Our experimental results indicate that state-of-the-art online heuristic search methods can handle large POMDP domains efficiently.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jingyuan Zhang ◽  
Zequn Zhang ◽  
Zhi Guo ◽  
Li Jin ◽  
Kang Liu ◽  
...  

Target-oriented opinion words extraction (TOWE) seeks to identify opinion expressions oriented to a specific target, and it is a crucial step toward fine-grained opinion mining. Recent neural networks have achieved significant success in this task by building target-aware representations. However, there are still two limitations of these methods that hinder the progress of TOWE. Mainstream approaches typically utilize position indicators to mark the given target, which is a naive strategy and lacks task-specific semantic meaning. Meanwhile, the annotated target-opinion pairs contain rich latent structural knowledge from multiple perspectives, but existing methods only exploit the TOWE view. To tackle these issues, we formulate the TOWE task as a question answering (QA) problem and leverage a machine reading comprehension (MRC) model trained with a multiview paradigm to extract targeted opinions. Specifically, we introduce a template-based pseudo-question generation method and utilize deep attention interaction to build target-aware context representations and extract related opinion words. To take advantage of latent structural correlations, we further cast the opinion-target structure into three distinct yet correlated views and leverage meta-learning to aggregate common knowledge among them to enhance the TOWE task. We evaluate the proposed model on four benchmark datasets, and our method achieves new state-of-the-art results. Extensional experiments have shown that the pipeline method with our approach could surpass existing opinion pair extraction models, including joint methods that are usually believed to work better.


2011 ◽  
Vol 48 (04) ◽  
pp. 954-967 ◽  
Author(s):  
Chin Hon Tan ◽  
Joseph C. Hartman

Sequential decision problems can often be modeled as Markov decision processes. Classical solution approaches assume that the parameters of the model are known. However, model parameters are usually estimated and uncertain in practice. As a result, managers are often interested in how estimation errors affect the optimal solution. In this paper we illustrate how sensitivity analysis can be performed directly for a Markov decision process with uncertain reward parameters using the Bellman equations. In particular, we consider problems involving (i) a single stationary parameter, (ii) multiple stationary parameters, and (iii) multiple nonstationary parameters. We illustrate the applicability of this work through a capacitated stochastic lot-sizing problem.


Sign in / Sign up

Export Citation Format

Share Document