scholarly journals Almost Envy-Freeness for Groups: Improved Bounds via Discrepancy Theory

Author(s):  
Pasin Manurangsi ◽  
Warut Suksompong

We study the allocation of indivisible goods among groups of agents using well-known fairness notions such as envy-freeness and proportionality. While these notions cannot always be satisfied, we provide several bounds on the optimal relaxations that can be guaranteed. For instance, our bounds imply that when the number of groups is constant and the $n$ agents are divided into groups arbitrarily, there exists an allocation that is envy-free up to $\Theta(\sqrt{n})$ goods, and this bound is tight. Moreover, we show that while such an allocation can be found efficiently, it is NP-hard to compute an allocation that is envy-free up to $o(\sqrt{n})$ goods even when a fully envy-free allocation exists. Our proofs make extensive use of tools from discrepancy theory.

Author(s):  
Ayumi Igarashi ◽  
Dominik Peters

We study the problem of allocating indivisible items to agents with additive valuations, under the additional constraint that bundles must be connected in an underlying item graph. Previous work has considered the existence and complexity of fair allocations. We study the problem of finding an allocation that is Pareto-optimal. While it is easy to find an efficient allocation when the underlying graph is a path or a star, the problem is NP-hard for many other graph topologies, even for trees of bounded pathwidth or of maximum degree 3. We show that on a path, there are instances where no Pareto-optimal allocation satisfies envy-freeness up to one good, and that it is NP-hard to decide whether such an allocation exists, even for binary valuations. We also show that, for a path, it is NP-hard to find a Pareto-optimal allocation that satisfies maximin share, but show that a moving-knife algorithm can find such an allocation when agents have binary valuations that have a non-nested interval structure.


2020 ◽  
Vol 34 (02) ◽  
pp. 2070-2078
Author(s):  
Yasushi Kawase ◽  
Hanna Sumita

We study the problem of fairly allocating a set of indivisible goods to risk-neutral agents in a stochastic setting. We propose an (approximation) algorithm to find a stochastic allocation that maximizes the minimum utility among the agents. The algorithm runs by repeatedly finding an (approximate) allocation to maximize the total virtual utility of the agents. This implies that the problem is solvable in polynomial time when the utilities are gross-substitutes (which is a subclass of submodular). When the utilities are submodular, we can find a (1 − 1/e)-approximate solution for the problem and this is best possible unless P=NP. We also extend the problem where a stochastic allocation must satisfy the (ex ante) envy-freeness. Under this condition, we demonstrate that the problem is NP-hard even when every agent has an additive utility with a matroid constraint (which is a subclass of gross-substitutes). Furthermore, we propose a polynomial-time algorithm for the setting with a restriction that the matroid constraint is common to all agents.


2019 ◽  
Vol 145 (4) ◽  
pp. 372-389 ◽  
Author(s):  
Tyler B. Mason ◽  
Kathryn E. Smith ◽  
Allison Engwall ◽  
Alisson Lass ◽  
Michael Mead ◽  
...  

10.29007/v68w ◽  
2018 ◽  
Author(s):  
Ying Zhu ◽  
Mirek Truszczynski

We study the problem of learning the importance of preferences in preference profiles in two important cases: when individual preferences are aggregated by the ranked Pareto rule, and when they are aggregated by positional scoring rules. For the ranked Pareto rule, we provide a polynomial-time algorithm that finds a ranking of preferences such that the ranked profile correctly decides all the examples, whenever such a ranking exists. We also show that the problem to learn a ranking maximizing the number of correctly decided examples (also under the ranked Pareto rule) is NP-hard. We obtain similar results for the case of weighted profiles when positional scoring rules are used for aggregation.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yu Yao ◽  
Junhui Zhao ◽  
Lenan Wu

This correspondence deals with the joint cognitive design of transmit coded sequences and instrumental variables (IV) receive filter to enhance the performance of a dual-function radar-communication (DFRC) system in the presence of clutter disturbance. The IV receiver can reject clutter more efficiently than the match filter. The signal-to-clutter-and-noise ratio (SCNR) of the IV filter output is viewed as the performance index of the complexity system. We focus on phase only sequences, sharing both a continuous and a discrete phase code and develop optimization algorithms to achieve reasonable pairs of transmit coded sequences and IV receiver that fine approximate the behavior of the optimum SCNR. All iterations involve the solution of NP-hard quadratic fractional problems. The relaxation plus randomization technique is used to find an approximate solution. The complexity, corresponding to the operation of the proposed algorithms, depends on the number of acceptable iterations along with on and the complexity involved in all iterations. Simulation results are offered to evaluate the performance generated by the proposed scheme.


1986 ◽  
Vol 9 (3) ◽  
pp. 323-342
Author(s):  
Joseph Y.-T. Leung ◽  
Burkhard Monien

We consider the computational complexity of finding an optimal deadlock recovery. It is known that for an arbitrary number of resource types the problem is NP-hard even when the total cost of deadlocked jobs and the total number of resource units are “small” relative to the number of deadlocked jobs. It is also known that for one resource type the problem is NP-hard when the total cost of deadlocked jobs and the total number of resource units are “large” relative to the number of deadlocked jobs. In this paper we show that for one resource type the problem is solvable in polynomial time when the total cost of deadlocked jobs or the total number of resource units is “small” relative to the number of deadlocked jobs. For fixed m ⩾ 2 resource types, we show that the problem is solvable in polynomial time when the total number of resource units is “small” relative to the number of deadlocked jobs. On the other hand, when the total number of resource units is “large”, the problem becomes NP-hard even when the total cost of deadlocked jobs is “small” relative to the number of deadlocked jobs. The results in the paper, together with previous known ones, give a complete delineation of the complexity of this problem under various assumptions of the input parameters.


Sign in / Sign up

Export Citation Format

Share Document