scholarly journals Change Matters: Medication Change Prediction with Recurrent Residual Networks

Author(s):  
Chaoqi Yang ◽  
Cao Xiao ◽  
Lucas Glass ◽  
Jimeng Sun

Deep learning is revolutionizing predictive healthcare, including recommending medications to patients with complex health conditions. Existing approaches focus on predicting all medications for the current visit, which often overlaps with medications from previous visits. A more clinically relevant task is to identify medication changes. In this paper, we propose a new recurrent residual networks, named MICRON, for medication change prediction. MICRON takes the changes in patient health records as input and learns to update a hid- den medication vector and the medication set recurrently with a reconstruction design. The medication vector is like the memory cell that encodes longitudinal information of medications. Unlike traditional methods that require the entire patient history for prediction, MICRON has a residual-based inference that allows for sequential updating based only on new patient features (e.g., new diagnoses in the recent visit), which is efficient. We evaluated MICRON on real inpatient and outpatient datasets. MICRON achieves 3.5% and 7.8% relative improvements over the best baseline in F1 score, respectively. MICRON also requires fewer parameters, which significantly reduces the training time to 38.3s per epoch with 1.5× speed-up.

2018 ◽  
Author(s):  
Mian Zhang ◽  
Yuhong Ji

A problem facing healthcare record systems throughout the world is how to share the medical data with more stakeholders for various purposes without sacrificing data privacy and integrity. Blockchain, operating in a state of consensus, is the underpinning technology that maintains the Bitcoin transaction ledger. Blockchain as a promising technology to manage the transactions has been gaining popularity in the domain of healthcare. Blockchain technology has the potential of securely, privately, and comprehensively manage patient health records. In this work, we discuss the latest status of blockchain technology and how it could solve the current issues in healthcare systems. We evaluate the blockchain technology from the multiple perspectives around healthcare data, including privacy, security, control, and storage. We review the current projects and researches of blockchain in the domain of healthcare records and provide the insight into the design and construction of next generations of blockchain-based healthcare systems.


2017 ◽  
Vol 109 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Valentin Deyringer ◽  
Alexander Fraser ◽  
Helmut Schmid ◽  
Tsuyoshi Okita

Abstract Neural Networks are prevalent in todays NLP research. Despite their success for different tasks, training time is relatively long. We use Hogwild! to counteract this phenomenon and show that it is a suitable method to speed up training Neural Networks of different architectures and complexity. For POS tagging and translation we report considerable speedups of training, especially for the latter. We show that Hogwild! can be an important tool for training complex NLP architectures.


Author(s):  
Hao Yu ◽  
Sen Yang ◽  
Shenghuo Zhu

In distributed training of deep neural networks, parallel minibatch SGD is widely used to speed up the training process by using multiple workers. It uses multiple workers to sample local stochastic gradients in parallel, aggregates all gradients in a single server to obtain the average, and updates each worker’s local model using a SGD update with the averaged gradient. Ideally, parallel mini-batch SGD can achieve a linear speed-up of the training time (with respect to the number of workers) compared with SGD over a single worker. However, such linear scalability in practice is significantly limited by the growing demand for gradient communication as more workers are involved. Model averaging, which periodically averages individual models trained over parallel workers, is another common practice used for distributed training of deep neural networks since (Zinkevich et al. 2010) (McDonald, Hall, and Mann 2010). Compared with parallel mini-batch SGD, the communication overhead of model averaging is significantly reduced. Impressively, tremendous experimental works have verified that model averaging can still achieve a good speed-up of the training time as long as the averaging interval is carefully controlled. However, it remains a mystery in theory why such a simple heuristic works so well. This paper provides a thorough and rigorous theoretical study on why model averaging can work as well as parallel mini-batch SGD with significantly less communication overhead.


2020 ◽  
pp. 135910532094858 ◽  
Author(s):  
Charlotte R Blease ◽  
Tom Delbanco ◽  
John Torous ◽  
Moa Ponten ◽  
Catherine M DesRoches ◽  
...  

This paper connects findings from the field of placebo studies with research into patients’ interactions with their clinician’s visit notes, housed in their electronic health records. We propose specific hypotheses about how features of clinicians’ written notes might trigger mechanisms of placebo and nocebo effects to elicit positive or adverse health effects among patients. Bridging placebo studies with (a) survey data assaying patient and clinician experiences with portals and (b) randomized controlled trials provides preliminary support for our hypotheses. We conclude with actionable proposals for testing our understanding of the health effects of access to visit notes.


Author(s):  
John J. L. Chelsom

The cityEHR Electronic Health Records system is a pure XML application for managing patient health records, using open standards. The structure of the health record follows the definition in the ISO 13606 standard, which is used in cityEHR as a basis for clinicians to develop specific information models for the patient data they gather for clinical and research purposes. In cityEHR these models are represented as OWL/XML ontologies. The most widely adopted approach to modelling patient data in accordance with ISO 13606 is openEHR, which uses its own Archetype Definition Language to specify the information models used in compliant health records systems. This paper describes a translator for the Archetype Definition Language, implemented using XSLT and XML pipeline processing, which generates OWL/XML suitable for use in cityEHR.


Sign in / Sign up

Export Citation Format

Share Document