Datalog Rewritability and Data Complexity of ALCHOIF with Closed Predicates

Author(s):  
Tomasz Gogacz ◽  
Sanja Lukumbuzya ◽  
Magdalena Ortiz ◽  
Mantas Šimkus

We study the relative expressiveness of ontology-mediated queries (OMQs) formulated in the expressive Description Logic ALCHOIF extended with closed predicates. In particular, we present a polynomial-time translation from OMQs into Datalog with negation under the stable model semantics, the formalism that underlies Answer Set Programming. This is a novel and non-trivial result: the considered OMQs are not only non-monotonic but also feature a tricky combination of nominals, inverse roles, and role functionality. We start with atomic queries and then lift our approach to a large class of first-order queries where quantification is “guarded” by closed predicates. Our translation is based on a characterization of the query answering problem via integer programming, and a specially crafted program in Datalog with negation that finds solutions to dynamically generated systems of integer inequalities. As an important by-product of our translation, we get that the query answering problem is co-NP-complete in data complexity for the considered class of OMQs. Thus, answering these OMQs in the presence of closed predicates is not harder than answering them in the standard setting. This is not obvious as closed predicates are known to increase data complexity for some existing ontology languages.

Author(s):  
Carsten Lutz ◽  
Leif Sabellek

We consider ontology-mediated queries (OMQs) based on an EL ontology and an atomic query (AQ), provide an ultimately fine-grained analysis of data complexity and study rewritability into linear Datalog-aiming to capture linear recursion in SQL. Our main results are that every such OMQ is in AC0, NL-complete or PTime-complete, and that containment in NL coincides with rewritability into linear Datalog (whereas containment in AC0 coincides with rewritability into first-order logic). We establish natural characterizations of the three cases, show that deciding linear Datalog rewritability (as well as the mentioned complexities) is ExpTime-complete, give a way to construct linear Datalog rewritings when they exist, and prove that there is no constant bound on the arity of IDB relations in linear Datalog rewritings.


2021 ◽  
Vol 70 ◽  
pp. 1335-1371
Author(s):  
Giuseppe De Giacomo ◽  
Xavier Oriol ◽  
Riccardo Rosati ◽  
Domenico Fabio Savo

In this paper we study instance-level update in DL-LiteA , a well-known description logic that influenced the OWL 2 QL standard. Instance-level update regards insertions and deletions in the ABox of an ontology. In particular we focus on formula-based approaches to instance-level update. We show that DL-LiteA , which is well-known for enjoying first-order rewritability of query answering, enjoys a first-order rewritability property also for instance-level update. That is, every update can be reformulated into a set of insertion and deletion instructions computable through a non-recursive Datalog program with negation. Such a program is readily translatable into a first-order query over the ABox considered as a database, and hence into SQL. By exploiting this result, we implement an update component for DL-LiteA-based systems and perform some experiments showing that the approach works in practice.


2020 ◽  
Vol 34 (03) ◽  
pp. 3017-3024
Author(s):  
Hai Wan ◽  
Guohui Xiao ◽  
Chenglin Wang ◽  
Xianqiao Liu ◽  
Junhong Chen ◽  
...  

In this paper, we study the problem of query answering with guarded existential rules (also called GNTGDs) under stable model semantics. Our goal is to use existing answer set programming (ASP) solvers. However, ASP solvers handle only finitely-ground logic programs while the program translated from GNTGDs by Skolemization is not in general. To address this challenge, we introduce two novel notions of (1) guarded instantiation forest to describe the instantiation of GNTGDs and (2) prime block to characterize the repeated infinitely-ground program translated from GNTGDs. Using these notions, we prove that the ground termination problem for GNTGDs is decidable. We also devise an algorithm for query answering with GNTGDs using ASP solvers. We have implemented our approach in a prototype system. The evaluation over a set of benchmarks shows encouraging results.


Author(s):  
Gianluca Cima ◽  
Domenico Lembo ◽  
Riccardo Rosati ◽  
Domenico Fabio Savo

We study privacy-preserving query answering in Description Logics (DLs). Specifically, we consider the approach of controlled query evaluation (CQE) based on the notion of instance indistinguishability. We derive data complexity results for query answering over DL-LiteR ontologies, through a comparison with an alternative, existing confidentiality-preserving approach to CQE. Finally, we identify a semantically well-founded notion of approximated query answering for CQE, and prove that, for DL-LiteR ontologies, this form of CQE is tractable with respect to data complexity and is first-order rewritable, i.e., it is always reducible to the evaluation of a first-order query over the data instance.


Author(s):  
GABRIELLA PASI ◽  
RAFAEL PEÑALOZA

Abstract A prominent problem in knowledge representation is how to answer queries taking into account also the implicit consequences of an ontology representing domain knowledge. While this problem has been widely studied within the realm of description logic ontologies, it has been surprisingly neglected within the context of vague or imprecise knowledge, particularly from the point of view of mathematical fuzzy logic. In this paper, we study the problem of answering conjunctive queries and threshold queries w.r.t. ontologies in fuzzy DL-Lite. Specifically, we show through a rewriting approach that threshold query answering w.r.t. consistent ontologies remains in ${AC}^{0}$ in data complexity, but that conjunctive query answering is highly dependent on the selected triangular norm, which has an impact on the underlying semantics. For the idempotent Gödel t-norm, we provide an effective method based on a reduction to the classical case.


Author(s):  
Salvador Lucas

The semantics of computational systems (e.g., relational and knowledge data bases, query-answering systems, programming languages, etc.) can often be expressed as (the specification of) a logical theory Th. Queries, goals, and claims about the behavior or features of the system can be expressed as formulas φ which should be checked with respect to the intended model of Th, which is often huge or even incomputable. In this paper we show how to prove such semantic properties φ of Th by just finding a model A of Th∪{φ}∪Zφ, where Zφ is an appropriate (possibly empty) theory depending on φ only. Applications to relational and deductive databases, rewriting-based systems, logic programming, and answer set programming are discussed.


2020 ◽  
Vol 34 (03) ◽  
pp. 3049-3056
Author(s):  
Heng Zhang ◽  
Yan Zhang ◽  
Jia-Huai You ◽  
Zhiyong Feng ◽  
Guifei Jiang

An ontology language for ontology mediated query answering (OMQA-language) is universal for a family of OMQA-languages if it is the most expressive one among this family. In this paper, we focus on three families of tractable OMQA-languages, including first-order rewritable languages and languages whose data complexity of the query answering is in AC0 or PTIME. On the negative side, we prove that there is, in general, no universal language for each of these families of languages. On the positive side, we propose a novel property, the locality, to approximate the first-order rewritability, and show that there exists a language of disjunctive embedded dependencies that is universal for the family of OMQA-languages with locality. All of these results apply to OMQA with query languages such as conjunctive queries, unions of conjunctive queries and acyclic conjunctive queries.


AI Magazine ◽  
2016 ◽  
Vol 37 (3) ◽  
pp. 33-44 ◽  
Author(s):  
Martin Gebser ◽  
Torsten Schaub

Answer set programming (ASP) has emerged as an approach to declarative problem solving based on the stable model semantics for logic programs. The basic idea is to represent a computational problem by a logic program, formulating constraints in terms of rules, such that its answer sets correspond to problem solutions. To this end, ASP combines an expressive language for high-level modeling with powerful low-level reasoning capacities, provided by off-the-shelf tools. Compact problem representations take advantage of genuine modeling features of ASP, including (first-order) variables, negation by default, and recursion. In this article, we demonstrate the ASP methodology on two example scenarios, illustrating basic as well as advanced modeling and solving concepts. We also discuss mechanisms to represent and implement extended kinds of preferences and optimization. An overview of further available extensions concludes the article.


2019 ◽  
Vol 64 ◽  
pp. 563-644 ◽  
Author(s):  
Meghyn Bienvenu ◽  
Camille Bourgaux ◽  
François Goasdoué

Several inconsistency-tolerant semantics have been introduced for querying inconsistent description logic knowledge bases. The first contribution of this paper is a practical approach for computing the query answers under three well-known such semantics, namely the AR, IAR and brave semantics, in the lightweight description logic DL-LiteR. We show that query answering under the intractable AR semantics can be performed efficiently by using IAR and brave semantics as tractable approximations and encoding the AR entailment problem as a propositional satisfiability (SAT) problem. The second issue tackled in this work is explaining why a tuple is a (non-)answer to a query under these semantics. We define explanations for positive and negative answers under the brave, AR and IAR semantics. We then study the computational properties of explanations in DL-LiteR. For each type of explanation, we analyze the data complexity of recognizing (preferred) explanations and deciding if a given assertion is relevant or necessary. We establish tight connections between intractable explanation problems and variants of SAT, enabling us to generate explanations by exploiting solvers for Boolean satisfaction and optimization problems. Finally, we empirically study the efficiency of our query answering and explanation framework using a benchmark we built upon the well-established LUBM benchmark.


Author(s):  
Diego Calvanese ◽  
Julien Corman ◽  
Davide Lanti ◽  
Simon Razniewski

Counting answers to a query is an operation supported by virtually all database management systems. In this paper we focus on counting answers over a Knowledge Base (KB), which may be viewed as a database enriched with background knowledge about the domain under consideration. In particular, we place our work in the context of Ontology-Mediated Query Answering/Ontology-based Data Access (OMQA/OBDA), where the language used for the ontology is a member of the DL-Lite family and the data is a (usually virtual) set of assertions. We study the data complexity of query answering, for different members of the DL-Lite family that include number restrictions, and for variants of conjunctive queries with counting that differ with respect to their shape (connected, branching, rooted). We improve upon existing results by providing PTIME and coNP lower bounds, and upper bounds in PTIME and LOGSPACE. For the LOGSPACE case, we have devised a novel query rewriting technique into first-order logic with counting.


Sign in / Sign up

Export Citation Format

Share Document