scholarly journals Unfounded Sets for Disjunctive Hybrid MKNF Knowledge Bases

2021 ◽  
Author(s):  
Spencer Killen ◽  
Jia-Huai You

Combining the closed-world reasoning of answer set programming (ASP) with the open-world reasoning of ontologies broadens the space of applications of reasoners. Disjunctive hybrid MKNF knowledge bases succinctly extend ASP and in some cases without increasing the complexity of reasoning tasks. However, in many cases, solver development is lagging behind. As the result, the only known method of solving disjunctive hybrid MKNF knowledge bases is based on guess-and-verify, as formulated by Motik and Rosati in their original work. A main obstacle is understanding how constraint propagation may be performed by a solver, which, in the context of ASP, centers around the computation of \textit{unfounded atoms}, the atoms that are false given a partial interpretation. In this work, we build towards improving solvers for hybrid MKNF knowledge bases with disjunctive rules: We formalize a notion of unfounded sets for these knowledge bases, identify lower complexity bounds, and demonstrate how we might integrate these developments into a DPLL-based solver. We discuss challenges introduced by ontologies that are not present in the development of solvers for disjunctive logic programs, which warrant some deviations from traditional definitions of unfounded sets. We compare our work with prior definitions of unfounded sets.

2014 ◽  
Vol 15 (2) ◽  
pp. 246-263 ◽  
Author(s):  
MANFRED JAEGER

AbstractOne of the big challenges in the development of probabilistic relational (or probabilistic logical) modeling and learning frameworks is the design of inference techniques that operate on the level of the abstract model representation language, rather than on the level of ground, propositional instances of the model. Numerous approaches for such “lifted inference” techniques have been proposed. While it has been demonstrated that these techniques will lead to significantly more efficient inference on some specific models, there are only very recent and still quite restricted results that show the feasibility of lifted inference on certain syntactically defined classes of models. Lower complexity bounds that imply some limitations for the feasibility of lifted inference on more expressive model classes were established earlier in Jaeger (2000; Jaeger, M. 2000. On the complexity of inference about probabilistic relational models. Artificial Intelligence 117, 297–308). However, it is not immediate that these results also apply to the type of modeling languages that currently receive the most attention, i.e., weighted, quantifier-free formulas. In this paper we extend these earlier results, and show that under the assumption that NETIME≠ETIME, there is no polynomial lifted inference algorithm for knowledge bases of weighted, quantifier-, and function-free formulas. Further strengthening earlier results, this is also shown to hold for approximate inference and for knowledge bases not containing the equality predicate.


2017 ◽  
Vol 17 (5-6) ◽  
pp. 889-905
Author(s):  
JIANMIN JI ◽  
FANGFANG LIU ◽  
JIA-HUAI YOU

AbstractHybrid MKNF knowledge bases have been considered one of the dominant approaches to combining open world ontology languages with closed world rule-based languages. Currently, the only known inference methods are based on the approach of guess-and-verify, while most modern SAT/ASP solvers are built under the DPLL architecture. The central impediment here is that it is not clear what constitutes a constraint propagator, a key component employed in any DPLL-based solver. In this paper, we address this problem by formulating the notion of unfounded sets for non-disjunctive hybrid MKNF knowledge bases, based on which we propose and study two new well-founded operators. We show that by employing a well-founded operator as a constraint propagator, a sound and complete DPLL search engine can be readily defined. We compare our approach with the operator based on the alternating fixpoint construction by Knorr et al. (2011. Artificial Intelligence 175, 9, 1528–1554) and show that, when applied to arbitrary partial partitions, the new well-founded operators not only propagate more truth values but also circumvent the non-converging behavior of the latter. In addition, we study the possibility of simplifying a given hybrid MKNF knowledge base by employing a well-founded operator and show that, out of the two operators proposed in this paper, the weaker one can be applied for this purpose and the stronger one cannot. These observations are useful in implementing a grounder for hybrid MKNF knowledge bases, which can be applied before the computation of MKNF models.


2011 ◽  
Vol 13 (3) ◽  
pp. 395-463
Author(s):  
CRISTINA FEIER ◽  
STIJN HEYMANS

AbstractOpen Answer Set Programming (OASP) is an undecidable framework for integrating ontologies and rules. Although several decidable fragments of OASP have been identified, few reasoning procedures exist. In this paper, we provide a sound, complete, and terminating algorithm for satisfiability checking w.r.t. Forest Logic Programs (FoLPs), a fragment of OASP where rules have a tree shape and allow for inequality atoms and constants. The algorithm establishes a decidability result for FoLPs. Although believed to be decidable, so far only the decidability for two small subsets of FoLPs, local FoLPs and acyclic FoLPs, has been shown. We further introduce f-hybrid knowledge bases, a hybrid framework where knowledge bases and FoLPs coexist, and we show that reasoning with such knowledge bases can be reduced to reasoning with FoLPs only. We note that f-hybrid knowledge bases do not require the usual (weakly) DL-safety of the rule component, thus providing a genuine alternative approach to current integration approaches of ontologies and rules.


Author(s):  
Wolfgang Faber ◽  
Michael Morak ◽  
Stefan Woltran

Epistemic Logic Programs (ELPs), that is, Answer Set Programming (ASP) extended with epistemic operators, have received renewed interest in recent years, which led to a flurry of new research, as well as efficient solvers. An important question is under which conditions a sub-program can be replaced by another one without changing the meaning, in any context. This problem is known as strong equivalence, and is well-studied for ASP. For ELPs, this question has been approached by embedding them into epistemic extensions of equilibrium logics. In this paper, we consider a simpler, more direct characterization that is directly applicable to the language used in state-of-the-art ELP solvers. This also allows us to give tight complexity bounds, showing that strong equivalence for ELPs remains coNP-complete, as for ASP. We further use our results to provide syntactic characterizations for tautological rules and rule subsumption for ELPs.


2019 ◽  
Vol 19 (5-6) ◽  
pp. 891-907
Author(s):  
MARIO ALVIANO ◽  
CARMINE DODARO ◽  
JOHANNES K. FICHTE ◽  
MARKUS HECHER ◽  
TOBIAS PHILIPP ◽  
...  

AbstractAnswer Set Programming (ASP) solvers are highly-tuned and complex procedures that implicitly solve the consistency problem, i.e., deciding whether a logic program admits an answer set. Verifying whether a claimed answer set is formally a correct answer set of the program can be decided in polynomial time for (normal) programs. However, it is far from immediate to verify whether a program that is claimed to be inconsistent, indeed does not admit any answer sets. In this paper, we address this problem and develop the new proof format ASP-DRUPE for propositional, disjunctive logic programs, including weight and choice rules. ASP-DRUPE is based on the Reverse Unit Propagation (RUP) format designed for Boolean satisfiability. We establish correctness of ASP-DRUPE and discuss how to integrate it into modern ASP solvers. Later, we provide an implementation of ASP-DRUPE into the wasp solver for normal logic programs.


Author(s):  
Ismail Ilkan Ceylan ◽  
Adnan Darwiche ◽  
Guy Van den Broeck

Large-scale probabilistic knowledge bases are becoming increasingly important in academia and industry alike. They are constantly extended with new data, powered by modern information extraction tools that associate probabilities with database tuples. In this paper, we revisit the semantics underlying such systems. In particular, the closed-world assumption of probabilistic databases, that facts not in the database have probability zero, clearly conflicts with their everyday use. To address this discrepancy, we propose an open-world probabilistic database semantics, which relaxes the probabilities of open facts to default intervals. For this open-world setting, we lift the existing data complexity dichotomy of probabilistic databases, and propose an efficient evaluation algorithm for unions of conjunctive queries. We also show that query evaluation can become harder for non-monotone queries.


2006 ◽  
Vol 6 (1-2) ◽  
pp. 23-60 ◽  
Author(s):  
THOMAS EITER ◽  
AXEL POLLERES

Answer set programming (ASP) with disjunction offers a powerful tool for declaratively representing and solving hard problems. Many NP-complete problems can be encoded in the answer set semantics of logic programs in a very concise and intuitive way, where the encoding reflects the typical “guess and check” nature of NP problems: The property is encoded in a way such that polynomial size certificates for it correspond to stable models of a program. However, the problem-solving capacity of full disjunctive logic programs (DLPs) is beyond NP, and captures a class of problems at the second level of the polynomial hierarchy. While these problems also have a clear “guess and check” structure, finding an encoding in a DLP reflecting this structure may sometimes be a non-obvious task, in particular if the “check” itself is a co-NP-complete problem; usually, such problems are solved by interleaving separate guess and check programs, where the check is expressed by inconsistency of the check program. In this paper, we present general transformations of head-cycle free (extended) disjunctive logic programs into stratified and positive (extended) disjunctive logic programs based on meta-interpretation techniques. The answer sets of the original and the transformed program are in simple correspondence, and, moreover, inconsistency of the original program is indicated by a designated answer set of the transformed program. Our transformations facilitate the integration of separate “guess” and “check” programs, which are often easy to obtain, automatically into a single disjunctive logic program. Our results complement recent results on meta-interpretation in ASP, and extend methods and techniques for a declarative “guess and check” problem solving paradigm through ASP.


Author(s):  
JORGE FANDINNO ◽  
WOLFGANG FABER ◽  
MICHAEL GELFOND

Abstract The language of epistemic specifications and epistemic logic programs extends disjunctive logic programs under the stable model semantics with modal constructs called subjective literals. Using subjective literals, it is possible to check whether a regular literal is true in every or some stable models of the program, those models, in this context also called belief sets, being collected in a set called world view. This allows for representing, within the language, whether some proposition should be understood accordingly to the open or the closed world assumption. Several attempts for capturing the intuitions underlying the language by means of a formal semantics were given, resulting in a multitude of proposals that makes it difficult to understand the current state of the art. In this article, we provide an overview of the inception of the field and the knowledge representation and reasoning tasks it is suitable for. We also provide a detailed analysis of properties of proposed semantics, and an outlook of challenges to be tackled by future research in the area.


2013 ◽  
Vol 14 (2) ◽  
pp. 239-264 ◽  
Author(s):  
ANA SOFIA GOMES ◽  
JOSÉ JÚLIO ALFERES ◽  
TERRANCE SWIFT

AbstractOntologies and rules are usually loosely coupled in knowledge representation formalisms. In fact, ontologies use open-world reasoning, while the leading semantics for rules use non-monotonic, closed-world reasoning. One exception is the tightly coupled framework of Minimal Knowledge and Negation as Failure (MKNF), which allows statements about individuals to be jointly derived via entailment from ontology and inferences from rules. Nonetheless, the practical usefulness of MKNF has not always been clear, although recent work has formalized a general resolution-based method for querying MKNF when rules are taken to have the well-founded semantics, and the ontology is modeled by a general oracle. That work leaves open what algorithms should be used to relate the entailments of the ontology and the inferences of rules. In this paper we provide such algorithms, and describe the implementation of a query-driven system, CDF-Rules, for hybrid knowledge bases combining both (non-monotonic) rules under the well-founded semantics and a (monotonic) ontology, represented by the Coherent Description Framework Type-1 ($\mathcal{ALCQ}$) theory.


Sign in / Sign up

Export Citation Format

Share Document