scholarly journals Rna Sequencing and Pathway Analysis Identify Tumor Necrosis Factor Alpha Driven Small Proline-Rich Protein Dysregulation in Chronic Rhinosinusitis

2017 ◽  
Vol 31 (5) ◽  
pp. 283-288 ◽  
Author(s):  
Vijay R. Ramakrishnan ◽  
Joseph R. Gonzalez ◽  
Sarah E. Cooper ◽  
Henry P. Barham ◽  
Catherine B. Anderson ◽  
...  

Background Chronic rhinosinusitis (CRS) is a heterogeneous inflammatory disorder in which many pathways contribute to end-organ disease. Small proline-rich proteins (SPRR) are polypeptides that have recently been shown to contribute to epithelial biomechanical properties relevant in T-helper type 2 inflammation. There is evidence that genetic polymorphism in SPRR genes may predict the development of asthma in children with atopy and, correlatively, that expression of SPRRs is increased under allergic conditions, which leads to epithelial barrier dysfunction in atopic disease. Methods RNAs from uncinate tissue specimens from patients with CRS and control subjects were compared by RNA sequencing by using Ingenuity Pathway Analysis (n = 4 each), and quantitative polymerase chain reaction (PCR) (n = 15). A separate cohort of archived sinus tissue was examined by immunohistochemistry (n = 19). Results A statistically significant increase of SPRR expression in CRS sinus tissue was identified that was not a result of atopic presence. SPRR1 and SPRR2A expressions were markedly increased in patients with CRS (p < 0.01) on RNA sequencing, with confirmation by using real-time PCR. Immunohistochemistry of archived surgical samples demonstrated staining of SPRR proteins within squamous epithelium of both groups. Pathway analysis indicated tumor necrosis factor (TNF) alpha as a master regulator of the SPRR gene products. Conclusion Expression of SPRR1 and of SPRR2A is increased in mucosal samples from patients with CRS and appeared as a downstream result of TNF alpha modulation, which possibly resulted in epithelial barrier dysfunction.

Blood ◽  
1994 ◽  
Vol 83 (8) ◽  
pp. 2211-2220 ◽  
Author(s):  
A Mire-Sluis ◽  
A Meager

Abstract In the present study, we used a cloned derivative, KYM-1D4, of the human rhabdomyosarcoma cell line, KYM-1, known to express high numbers of the two tumor necrosis factor (TNF) receptors, TR60 and TR80, and to be highly sensitive to TNF alpha-mediated cytotoxicity/antiproliferation, to investigate the role of TR60 and TR80 in protein phosphorylation. Using permeabilized KYM-1D4 cells, it was found that TNF alpha strongly induced phosphorylation of proteins of molecular weight 80, 65, 58, 42, and 30 kD. Addition of a monoclonal antibody (MoAb) against TR60 was shown to induce cytotoxicity/antiproliferation in KYM-1D4 cells and the same pattern of protein phosphorylation as TNF alpha, whereas addition of an MoAb against TR80 was both noncytotoxic and ineffective in inducing protein phosphorylation. In contrast, in a highly TNF alpha-resistant KYM-1- derived cell line, 37B8R, no protein phosphorylation was induced with either TNF alpha or the agonistic anti-TR60 MoAb. However, when 37B8R was allowed to revert to partial TNF sensitivity by culture in the absence of TNF alpha, the resultant cell line, 37B8S, was found to regain inducibility of protein phosphorylation by TNF alpha. These results indicate that expression of functional TR60 in KYM-1-related cell lines is principally involved in TNF-mediated cytotoxicity/antiproliferation and is necessary for the induction of protein phosphorylation. Nevertheless, the latter, although apparently strongly associated with cytotoxicity, was probably involved in protective mechanisms because protein kinase C inhibitors that inhibited TNF alpha and anti-TR60-induced phosphorylation increased the cytotoxic/antiproliferative response to these mediators.


Sign in / Sign up

Export Citation Format

Share Document