scholarly journals The Effects of Gamma-ray Irradiation to Strawberry (Fragaria*ananassa Duch.) Calli on Shoot Regeneration, Achene Formation and Morphological Variations of Regenerants.

2002 ◽  
Vol 71 (3) ◽  
pp. 419-423 ◽  
Author(s):  
Masakazu Kasumi
2021 ◽  
pp. 386-398
Author(s):  
Dayani Karunananda ◽  
Ramya Ranathunga ◽  
Wathsala Abeysinghe

Abstract Philodendron erubescens 'Gold', an ornamental plant and a popular climber with brilliant greenish yellow leaves, is used in indoor gardening and landscaping. It is commonly propagated through vegetative cuttings, thus incorporation of new traits through conventional breeding is impracticable. As commercial floriculture always demands novel varieties, this study was carried out to induce mutation in P. erubescens 'Gold' leaves using gamma- ray irradiation. Rooted cuttings (n = 200) of P. erubescens 'Gold' were subjected to 70 Gy, 100 Gy and 150 Gy gamma-rays and recovered on a propagator. Surviving shoots were transferred to pots. Regenerated shoots were multiplied vegetatively and ten M1 lines were maintained as M1-1 to M1-10 for 12 generations (M1V12) to evaluate growth and morphological variations along with their genetic stability. Of all 70 Gy and 100 Gy treated cuttings, 24 and two, respectively, survived after 6 months. Most of the irradiated plants had lost regeneration ability except for two M1 plants, which also showed comparatively reduced growth (one leaf in 45 days). Only one regenerated M1 plant showed morphological variation in its leaves and it was multiplied and maintained as lines. Several variations, including characteristics of leaves (shape, size, colour), stems (internodal length and branching) and plant stature, were observed among M1 lines and in subsequent vegetative generations. Leaves had three different colour patches, but neither the colour nor its distribution pattern was uniform or stable. The M1-4 line showed the highest stability of colour distribution in leaves; the colour composition of its leaves ranged as 0-10% dark bluish green, 60-90% strong yellow green and 10-30% brilliant greenish yellow throughout the 12 generations. This study demonstrates that gamma irradiated P. erubescens 'Gold' line M1-4 can be a promising mutant to develop as a new Philodendron cultivar.


HortScience ◽  
2012 ◽  
Vol 47 (1) ◽  
pp. 81-83 ◽  
Author(s):  
Wenhao Dai ◽  
Victoria Magnusson

Buddleia species is commonly used as a perennial for landscaping as a result of its heavy flowers and long bloom period. However, this species has a few concerns such as lack of flower color, excessive growth, and an invasive nature. Attempts to improve Buddleia using conventional breeding methods have resulted in limited success. In this study, mutagenesis by gamma ray irradiation was used to induce genetic variations. In vitro shoot tips of two Buddleia cultivars, B. davidii ‘Potters Purple’ and Buddleia ‘Lochinch’, were exposed to 0 to 150 Gy gamma rays and then recovered in Murashige and Skoog (MS) medium supplemented with 2.5 μM benzyladenine (BA). Shoots that recovered from the gamma ray treatment were rooted in half-strength MS medium with 0.5 μM naphthalene acetic acid (NAA) and grown in the greenhouse. The growth of shoot tips was inhibited after they were exposed to gamma rays. An average of 50.8% of shoots treated with 50 Gy gamma rays were recovered, whereas only 9.7% and 6.5% of shoots recovered when exposed to 100 and 150 Gy gamma rays, respectively. After transfer to the greenhouse, a few plants showed reduced growth with some dying before they reached the flowering stage. Various variations including characteristics of leaves (shape, size, hairs), stems (shape, internode length, branching), flowers (color, size, and structure), and plant stature were observed. This research demonstrates that in vitro mutation induction using gamma ray irradiation could be a useful protocol to develop new cultivars or genetic materials for further breeding of Buddleia or other related species.


2019 ◽  
Vol 20 (2) ◽  
pp. 463-467 ◽  
Author(s):  
EMI SUSILA ◽  
ARI SUSILOWATI ◽  
AHMAD YUNUS

Abstract. Susila E, Susilowati A, Yunus A. 2019. The morphological diversity of Chrysanthemum resulted from gamma ray irradiation. Biodiversitas 20: 463-467. Chrysanthemum is a popular ornamental plant. The high market demand makes breeders develop new cultivars to meet market preferences. One way to get superior varieties of Chrysanthemum is by using gamma ray mutation induction which will increase the morphological variations. The purpose of this study is to determine the Chrysanthemum’s morphological diversity resulted from gamma irradiation through morphological markers. This experimental research used a completely randomized design (CRD) with one factor, i.e. radiation doses: 0 Gy (control), 10 Gy, 15 Gy, and 20 Gy. The observations were carried out qualitatively and quantitatively. The data obtained were analyzed using the SPSS 15.0 and the NTSYS (Numerical Taxonomy and Multivariate Analysis System) 2.02 program. The results showed that increasing the dose of gamma irradiation inhibited plant growth. Irradiation at 10 Gy and 20 Gy produced the most color changes in flowers compared to other doses. The basic color of 0 Gy irradiation is purple. Irradiation at 10 Gy and 20 Gy produced dark purple and deep red. Quantitative data showed that the treatment of gamma ray irradiation significantly affected the leaf length, leaf width, stem diameter, stem length, and diameter of flowers. The irradiation also caused changes in shape and texture of the leaves. The dendrogram showed that 20 Gy irradiation resulted the most diverse morphology compared to the control, 10 Gy and 15 Gy.


1996 ◽  
Vol 11 (3) ◽  
pp. 461-469 ◽  
Author(s):  
C YONEZAWA ◽  
T TANAKA ◽  
H KAMIOKA

1989 ◽  
Vol 12 (2) ◽  
pp. 115-134 ◽  
Author(s):  
DONALD W. THAYER ◽  
JAMES J. SHIEH ◽  
RONALD K. JENKINS ◽  
JOHN G. PHILLIPS ◽  
EUGEN WIERBICKI ◽  
...  

2005 ◽  
Vol 293 (1) ◽  
pp. 106-110 ◽  
Author(s):  
Takuya Kinoshita ◽  
Satoshi Seino ◽  
Yoshiteru Mizukoshi ◽  
Yohei Otome ◽  
Takashi Nakagawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document