scholarly journals Formation Mechanism of an Adherent Vortex in the Side Pump Sump of a Pumping Station

2021 ◽  
Vol 20 (2) ◽  
pp. 327-338
Author(s):  
W. Xi ◽  
W. G. Lu
Author(s):  
Raja Abou Ackl ◽  
Andreas Swienty ◽  
Flemming Lykholt-Ustrup ◽  
Paul Uwe Thamsen

In many places lifting systems represent central components of wastewater systems. Pumping stations with a circular wet-pit design are characterized by their relatively small footprint for a given sump volume as well as their relatively simple construction technique [1]. This kind of pumping stations is equipped with submersible pumps. These are located in this case directly in the wastewater collection pit. The waste water passes through the pump station untreated and loaded with all kind of solids. Thus, the role of the pump sump is to provide an optimal operating environment for the pumps in addition to the transportation of sewage solids. Understanding the effects of design criteria on pumping station performance is important to fulfil the wastewater transportation as maintenance-free and energy efficient as possible. The design of the pit may affect the overall performance of the station in terms of poor flow conditions inside the pit, non-uniform und disturbed inflow at the pump inlet, as well as air entrainment to the pump. The scope of this paper is to evaluate the impact of various design criteria and the operating conditions on the performance of pump stations concerning the air entrainment to the pump as well as the sedimentation inside the pit. This is done to provide documentation and recommendations of the design and operating of the station. The investigated criteria are: the inflow direction, and the operating submergence. In this context experiments were conducted on a physical model of duplex circular wet pit wastewater pumping station. Furthermore the same experiments were reproduced by numerical simulations. The physical model made of acrylic allowed to visualize the flow patterns inside the sump at various operating conditions. This model is equipped with five different inflow directions, two of them are tangential to the pit and the remaining three are radial in various positions relative to the pumps centerline. Particles were used to enable the investigation of the flow patterns inside the pit to determine the zones of high sedimentation risk. The air entrainment was evaluated on the model test rig by measuring the depth, the width and the length of the aerated region caused by the plunging water jet and by observing the air bubbles entering the pumps. The starting sump geometry called baseline geometry is simply a flat floor. The tests were done at all the possible combinations of inflow directions, submergence, working pump and operating flow. The ability of the numerical simulation to give a reliable prediction of air entrainment was assessed to be used in the future as a tool in scale series to define the scale effect as well as to analyze the flow conditions inside the sump and to understand the air entrainment phenomenon. These simulations were conducted using the geometries of the test setup after generating the mesh with tetrahedral elements. The VOF multiphase model was applied to simulate the interaction of the liquid water phase and the gaseous air phase. On the basis of the results constructive suggestions are derived for the design of the pit, as well as the operating conditions of the pumping station. At the end recommendations for the design and operating conditions are provided.


Author(s):  
X L Tang ◽  
F J Wang ◽  
Y J Li ◽  
G H Cong ◽  
X Y Shi ◽  
...  

This work uses a commercial computational fluid dynamics code to predict three-dimensional (3D) vortex flows in a large centrifugal-pump station under construction in China and proposes relevant vortex-eliminating schemes. Because of the complex nature of the vortex flows in sumps, different turbulence models, namely, standard k–ε, re-normalization group k–ε and realizable k–ε models, are first used to investigate their feasibility in predicting flows in a small physical model of an open pump sump, and various vortex streamlines and strength in the sump are predicted, analysed, and compared with the experimental data. The comparisons show that the realizable k–ε model predicts the position and strength of free-surface, sidewall-attached, and floor-attached vortices more accurately than the other two models. Then, the realizable k–ε model is used here to investigate 3D vortex flows in a large pumping-station sump. All the various vortices, such as free-surface, wall-attached vortices, are successfully predicted. Thus, based on the information of location, shape, size, and strength of the calculated vortices, three types of vortex-eliminating devices are proposed and their corresponding vortex suppression effects are analysed. These results will be used as reference for the safe and stable operation of the Hui–Nan–Zhuang pumping station in the future.


2019 ◽  
Vol 79 (9) ◽  
pp. 1739-1745
Author(s):  
Martin Fencl ◽  
Morten Grum ◽  
Morten Borup ◽  
Peter Steen Mikkelsen

Abstract Flow data represent crucial input for reliable diagnostics of sewer functions and identification of potential problems such as unwanted inflow and infiltration. Flow estimates from pumping stations, which are an integral part of most separate sewer systems, might help in this regard. A robust model and an associated optimization procedure is proposed for estimating inflow to a pumping station using only registered water levels in the pump sump and power consumption. The model was successfully tested on one month of data from a single upstream station. The model is suitable for identification of pump capacity and volume thresholds for switching the pump on and off. These are parameters which are required for flow estimation during periods with high inflows or during periods with flow conditions triggering pump switching on and off at frequencies close to the temporal resolution of monitored data. The model is, however, sensitive within the transition states between emptying and filling to observation errors in volume and on inflow/outflow variability.


2019 ◽  
Vol 85 (875) ◽  
pp. 19-00072-19-00072 ◽  
Author(s):  
Yoshinobu YAMADE ◽  
Chisachi KATO ◽  
Takahide NAGAHARA ◽  
Jun MATSUI

2017 ◽  
Vol 25 (101) ◽  
pp. 34-43 ◽  
Author(s):  
Vladyslav, Lysiak ◽  
◽  
Myroslav, Sabat ◽  
Yurii, Shelekh

Sign in / Sign up

Export Citation Format

Share Document