scholarly journals Performance Evaluation of WDM Optical Fiber Communication System in the presence of PMD

2021 ◽  
Vol 5 (2) ◽  
pp. 90-103
Author(s):  
Nawroz Hamadamen

This paper investigates for rising optical fiber transmission strength, increasing bandwidth, and decreasing communication system weakness by using wavelength division multiplexing (WDM). WDM gives today's distention speed and communication traffic. Systems using WDM faces nonlinearities, which the most intensive nonlinear attack is, four wave mixing (FWM). FWM creates and increases crosstalk between WDM channels as a result slows down and impairs the performance of the communication system. This investigation uses orthogonal frequency division multiplexing (OFDM) for evaluating execution of WDM fiber system by repairing Polarization Mode Dispersion (PMD). We took results in the case of trying PMD-Emulator and without trying PMD-Emulator in the system design. We compared the results got in both cases. Furthermore, we compared the performance of the system with the investigations done using different ways, methods, and techniques for compensating PMD and FWM appears in WDM systems. As PMD-Emulator, helps enhancing the system design performance, and OFDM gives the feature of robustness and useful execution to the system. OFDM examined by appointing interfered orthogonal signal sets, for 16 channels; with equally spaced OFDM channels. Oure results showed that the optical fiber communication system using OFDM technique gives perfect removing FWM signal crosstalk, and accurate data transmission, comparing to other techniques used in other researches. We got a decreased FWM power to -77dBm, and the BER of -0.317. Furthermore, the system quality increased with applying PMD-Emulator and OFDM. In addition, using PMD-Emulator in the system design raised the results effectiveness. The program used in the present work is optisystem-15, and the results obtained in this study coincide with the theoretical and actual results obtained by the previous studies.

2011 ◽  
Vol 8 (2) ◽  
pp. 479-484
Author(s):  
Baghdad Science Journal

The work in this paper focuses on the system quality of direct and coherent communication system for two computers. A system quality is represented by Signal to Noise ratio (SNR) and Bit Error Rate (BER). First part of the work includes implementation of direct optical fiber communication system and measure the system quality .The second part of the work include implementation both the( homodyne and heterodyne)coherent optical fiber communication system and measure the system quality . Laser diode 1310 nm wavelength with its drive circuit used in the transmitter circuit . A single mode of 62.11 km optical fiber is selected as transmission medium . A PIN photo detector is used in the receiver circuit. The optical D-coupler was used to combine the optical signal that come from transmitter laser source with optical signal of laser local oscillator at 1310/1550 nm to obtain coherent detection . Results show that for direct detection the SNR and the BER (28.5 dB, 9.64x10-8,) respectively, while for homodyne and heterodyne coherent detection , the SNR(94.36,97.71)dB and the BER are (1.32x10-22,2.43x10-23) at maximum optical fiber length at 62.11 km. Results show that the homodyne and heterodyne detection are better than direct detection because the large output SNR and low BER of the received signal.


2019 ◽  
Vol 364 ◽  
pp. 239-244 ◽  
Author(s):  
Tian-You Cheng ◽  
Da-Ya Chou ◽  
Ching-Chuan Liu ◽  
Ya-Ju Chang ◽  
Chii-Chang Chen

2014 ◽  
Vol 596 ◽  
pp. 788-793 ◽  
Author(s):  
Xiao Hua Wang ◽  
Qian Zhao ◽  
Li Li ◽  
Jie Ding ◽  
Qiu Xin Zheng ◽  
...  

The losses of the off-axis rotary optical fiber communication system were derived from optical fiber coupling, three kinds of misalignments between optical fiber collimators (Axial separation Z0, lateral offset X0, angular tilting θ), incomplete alignment of optical fiber collimator during rotation and system tremble caused by high speed rotating. Some measures were taken to reduce the loss. The thermally expanded core fiber collimator cut down the influence of axial separation and angular tilting. The position of the optical fiber collimator on the flange was adjusted and infrared right angle prisms were installed to reduce the losses during rotation of the system. In addition, improving the precision and optimizing device of mechanical structure can increase the stability of the whole experiment platform and decrease the losses.


Sign in / Sign up

Export Citation Format

Share Document