ARTIFICIAL INTELLIGENT BASED TIME SERIES FORECASTING OF STOCK PRICES USING DIGITAL FILTERS

2002 ◽  
Vol 07 (01) ◽  
Author(s):  
A. Sfetsos ◽  
C. Siriopoulos
2021 ◽  
Vol 2115 (1) ◽  
pp. 012044
Author(s):  
R. Vaibhava Lakshmi ◽  
S. Radha

Abstract The time series forecasting strategy, Auto-Regressive Integrated Moving Average (ARIMA) model, is applied on the time series data consisting of Adobe stock prices, in order to forecast the future prices for a period of one year. ARIMA model is used due to its simple and flexible implementation for short term predictions of future stock prices. In order to achieve stationarity, the time series data requires second-order differencing. The comparison and parameterization of the ARIMA model has been done using auto-correlation plot, partial auto-correlation plot and auto.arima() function provided in R (which automatically finds the best fitting model based on the AIC and BIC values). The ARIMA (0, 2, 1) (0, 0, 2) [12] is chosen as the best fitting model, with a very less MAPE (Mean Absolute Percentage Error) of 3.854958%.


Author(s):  
Eugeny Yu. Shchetinin

Time Series Forecasting has always been a very important area of research in many domains because many different types of data are stored as time series. Given the growing availability of data and computing power in the recent years, Deep Learning has become a fundamental part of the new generation of Time Series Forecasting models, obtaining excellent results.As different time series problems are studied in many different fields, a large number of new architectures have been developed in recent years. This has also been simplified by the growing availability of open source frameworks, which make the development of new custom network components easier and faster.In this paper three different Deep Learning Architecture for Time Series Forecasting are presented: Recurrent Neural Networks (RNNs), that are the most classical and used architecture for Time Series Forecasting problems; Long Short-Term Memory (LSTM), that are an evolution of RNNs developed in order to overcome the vanishing gradient problem; Gated Recurrent Unit (GRU), that are another evolution of RNNs, similar to LSTM.The article is devoted to modeling and forecasting the cost of international air transportation in a pandemic using deep learning methods. The author builds time series models of the American Airlines (AAL) stock prices for a selected period using LSTM, GRU, RNN recurrent neural networks models and compare the accuracy forecast results.


Author(s):  
Vincent Cho

Businesses are recognizing the value of data as a strategic asset. This is reflected by the high degree of interest in new technologies such as data mining. Corporations in banking, insurance, retail, and healthcare are harnessing aggregated operational data to help understand and run their businesses (Brockett et al., 1997; Delmater & Hamcock, 2001). Analysts use data-mining techniques to extract business information that enables better decision making (Cho et al., 1998; Cho & Wüthrich, 2002). In particular, time series forecasting is one of the major focuses in data mining. Time series forecasting is used in a variety of fields, such as agriculture, business, economics, engineering, geophysics, medical studies, meteorology, and social sciences. A time series is a sequence of data ordered in time, such as hourly temperature, daily stock prices, monthly sales, quarterly employment rates, yearly population changes, and so forth.


2020 ◽  
Author(s):  
Pathikkumar Patel ◽  
Bhargav Lad ◽  
Jinan Fiaidhi

During the last few years, RNN models have been extensively used and they have proven to be better for sequence and text data. RNNs have achieved state-of-the-art performance levels in several applications such as text classification, sequence to sequence modelling and time series forecasting. In this article we will review different Machine Learning and Deep Learning based approaches for text data and look at the results obtained from these methods. This work also explores the use of transfer learning in NLP and how it affects the performance of models on a specific application of sentiment analysis.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 455 ◽  
Author(s):  
Hongjun Guan ◽  
Zongli Dai ◽  
Shuang Guan ◽  
Aiwu Zhao

In time series forecasting, information presentation directly affects prediction efficiency. Most existing time series forecasting models follow logical rules according to the relationships between neighboring states, without considering the inconsistency of fluctuations for a related period. In this paper, we propose a new perspective to study the problem of prediction, in which inconsistency is quantified and regarded as a key characteristic of prediction rules. First, a time series is converted to a fluctuation time series by comparing each of the current data with corresponding previous data. Then, the upward trend of each of fluctuation data is mapped to the truth-membership of a neutrosophic set, while a falsity-membership is used for the downward trend. Information entropy of high-order fluctuation time series is introduced to describe the inconsistency of historical fluctuations and is mapped to the indeterminacy-membership of the neutrosophic set. Finally, an existing similarity measurement method for the neutrosophic set is introduced to find similar states during the forecasting stage. Then, a weighted arithmetic averaging (WAA) aggregation operator is introduced to obtain the forecasting result according to the corresponding similarity. Compared to existing forecasting models, the neutrosophic forecasting model based on information entropy (NFM-IE) can represent both fluctuation trend and fluctuation consistency information. In order to test its performance, we used the proposed model to forecast some realistic time series, such as the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX), the Shanghai Stock Exchange Composite Index (SHSECI), and the Hang Seng Index (HSI). The experimental results show that the proposed model can stably predict for different datasets. Simultaneously, comparing the prediction error to other approaches proves that the model has outstanding prediction accuracy and universality.


Author(s):  
Rafael R. C. Silva ◽  
Walmir Matos Caminhas ◽  
Petronio Candido de Lima e Silva ◽  
Frederico Gadelha Guimaraes

Sign in / Sign up

Export Citation Format

Share Document