scholarly journals Experimental Analysis of Heat Transfer Enhancement and Flow with Cu, TiO2 Ethylene Glycol Distilled Water Nanofluid in Spiral Coil Heat

2017 ◽  
Vol 24 (3) ◽  
pp. 52-63
Author(s):  
Khalid Faisal Sultan
2021 ◽  
Vol 12 (2) ◽  
pp. 55
Author(s):  
Abdullh Mansur Aldosry ◽  
Rozli Zulkifli ◽  
Wan Aizon Wan Ghopa

As the automotive industry progresses, electric vehicles (EV) grow with increasing demand throughout the world. Nickel-metal hydride (NiMH) battery and lithium-ion (Li-ion) are widely used in EV due to their advantages such as impressive energy density, good power density, and low self-discharge. However, the batteries must be operated within their optimum range for safety and good thermal management to enable a longer lifespan, lower costs, and improve safety for EV batteries. The need for a liquid cold plate (LCP) to be used in EV batteries is now highly reliable on the distribution of the required temperature rather than only standard cooling systems. The fins arrangement in the LCP would likewise impact the cooling efficiency of the EV battery. The main objective of this paper is to determine the heat transfer enhancement of liquid cold plate systems with the oblique fin and different types of liquid coolants. In the experimental test, two liquid types are used namely G13 ethylene glycol and distilled water in five steps, 10% ethylene glycol, 100% distilled water, 75% ethylene glycol + 25% distilled water, 50% ethylene glycol + 50% distilled water, and 25% ethylene glycol + 75% distilled water. Three different flow rates have been utilized which are 0.3, 0.5, and 0.7 GPM to maximize the productivity of flowing fluid and heat transferring with the gate door valve. The LCP encompasses the inline configuration of the oblique fin, which is able to enhance the heat transfer rate from the heater to the liquid cold plate. A GPM of 0.7 reached the least surface temperature for the battery in the three different flow levels. The LCP is capable of sustaining the ambient surface temperatures of the batteries just under the permissible 50 °C operating temperature, which indicates that the developed LCP with the oblique fin may perhaps become an effective option for the thermal control of EV batteries.


Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 653 ◽  
Author(s):  
Ali Rehman ◽  
Zabidin Salleh ◽  
Taza Gul ◽  
Zafar Zaheer

The unsteady flow of nanoliquid film over a flexible surface has been inspected. Water and ethylene glycol are used as the base liquids for the graphene oxide platelets. The comparison of two sorts of nanoliquids has been used for heat transfer enhancement applications. The thickness of the nanoliquid film is kept as a variable. The governing equations for the flow problem have been altered into the set of nonlinear differential equations. The BVP 2.0 package has been used for the solution of the problem. The sum of the square residual error has been calculated up to the 10th order approximations. It has been observed that the graphene oxide ethylene glycol based nanofluid (GO-EG) is more efficient for heat transfer enhancement as compared to the graphene oxide water based nanofluid (GO-W). The impact of the physical parameters has been plotted and discussed.


Sign in / Sign up

Export Citation Format

Share Document