Dicentrine and Dicentrinone Isolated from Stephania tetrandrae Radix Suppress HepG2 Proliferation through Inhibiting PDI Activity

2021 ◽  
Vol 15 (5) ◽  
pp. 396-407
Author(s):  
Mojiao Zhao ◽  
Chao Zhang ◽  
Dong Zhang ◽  
Siyu Zhu ◽  
Tianjiao Liu ◽  
...  

Inhibition of protein disulfide isomerase (PDI) has been attempted as a promising anti-cancer strategy. However, there is still no currently available PDI inhibitors approved for clinical use. Here, we isolated seven high yield alkaloids from Stephaniae tetrandrae Radix (STR), a medical herb frequently prescribed in anti-tumor condition, and identified two potent natural PDI inhibitors, dicentrine and dicentrinone. Among the seven alkaloids isolated, dicentrinone (1), dicentrine (2), tetrandrine (4), and fangchinoline (5) could significantly reduce cell viability in a dosage dependent manner detected by MTT assay in human hepatoma cells. To examine whether the candidate compounds are potent PDI inhibitors, we performed insulin turbidity assay and found dicentrine and dicentrinone, but not tetrandrine and fangchinoline, could effectively inhibit PDI activity, with IC50 of 56.70 μM and 43.95 μM respectively. Meanwhile, dicentrine and dicentrinone failed to further reduce the cell number index when co-treated with siRNA of PDI, suggesting the compounds behave as PDI inhibitors. Furthermore, dicentrinone and dicentrine have been successfully docked to the active pocket of PDI (PDB #3UEM) by molecular docking, suggesting the existence of physical interaction between compounds and PDI. Our results suggested that dicentrine and dicentrinone may be developed into safe PDI inhibitors.

Toxins ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 458 ◽  
Author(s):  
Jessica Guyette ◽  
Patrick Cherubin ◽  
Albert Serrano ◽  
Michael Taylor ◽  
Faisal Abedin ◽  
...  

Protein disulfide isomerase (PDI) is mainly located in the endoplasmic reticulum (ER) but is also secreted into the bloodstream where its oxidoreductase activity is involved with thrombus formation. Quercetin-3-rutinoside (Q3R) blocks this activity, but its inhibitory mechanism against PDI is not fully understood. Here, we examined the potential inhibitory effect of Q3R on another process that requires PDI: disassembly of the multimeric cholera toxin (CT). In the ER, PDI physically displaces the reduced CTA1 subunit from its non-covalent assembly in the CT holotoxin. This is followed by CTA1 dislocation from the ER to the cytosol where the toxin interacts with its G protein target for a cytopathic effect. Q3R blocked the conformational change in PDI that accompanies its binding to CTA1, which, in turn, prevented PDI from displacing CTA1 from its holotoxin and generated a toxin-resistant phenotype. Other steps of the CT intoxication process were not affected by Q3R, including PDI binding to CTA1 and CT reduction by PDI. Additional experiments with the B chain of ricin toxin found that Q3R could also disrupt PDI function through the loss of substrate binding. Q3R can thus inhibit PDI function through distinct mechanisms in a substrate-dependent manner.


1997 ◽  
Vol 239 (3) ◽  
pp. 710-714 ◽  
Author(s):  
Hiroyuki Tachikawa ◽  
Wataru Funahashi ◽  
Yutaka Takeuchi ◽  
Hideki Nakanishi ◽  
Rikuka Nishihara ◽  
...  

2010 ◽  
Vol 21 (18) ◽  
pp. 3093-3105 ◽  
Author(s):  
Lori A. Rutkevich ◽  
Myrna F. Cohen-Doyle ◽  
Ulf Brockmeier ◽  
David B. Williams

To examine the relationship between protein disulfide isomerase family members within the mammalian endoplasmic reticulum, PDI, ERp57, ERp72, and P5 were depleted with high efficiency in human hepatoma cells, either singly or in combination. The impact was assessed on the oxidative folding of several well-characterized secretory proteins. We show that PDI plays a predominant role in oxidative folding because its depletion delayed disulfide formation in all secretory proteins tested. However, the phenotype was surprisingly modest suggesting that other family members are able to compensate for PDI depletion, albeit with reduced efficacy. ERp57 also exhibited broad specificity, overlapping with that of PDI, but with preference for glycosylated substrates. Depletion of both PDI and ERp57 revealed that some substrates require both enzymes for optimal folding and, furthermore, led to generalized protein misfolding, impaired export from the ER, and degradation. In contrast, depletion of ERp72 or P5, either alone or in combination with PDI or ERp57 had minimal impact, revealing a narrow substrate specificity for ERp72 and no detectable role for P5 in oxidative protein folding.


2007 ◽  
Vol 403 (2) ◽  
pp. 283-288 ◽  
Author(s):  
Susannah E. Bell ◽  
Chirag M. Shah ◽  
Michael P. Gordge

S-nitrosothiol compounds are important mediators of NO signalling and can give rise to various redox derivatives of NO: nitrosonium cation (NO+), nitroxyl anion (NO−) and NO• radical. Several enzymes and transporters have been implicated in the intracellular delivery of NO from S-nitrosothiols. In the present study we have investigated the role of GPx (glutathione peroxidase), the L-AT (L-amino acid transporter) system and PDI (protein disulfide-isomerase) in the delivery of NO redox derivatives into human platelets. Washed human platelets were treated with inhibitors of GPx, L-AT and PDI prior to exposure to donors of NO redox derivatives (S-nitrosoglutathione, Angeli's salt and diethylamine NONOate). Rapid delivery of NO-related signalling into platelets was monitored by cGMP accumulation and DAF-FM (4-amino-5-methylamino-2′7′-difluorofluorescein) fluorescence. All NO redox donors produced both a cGMP response and DAF-FM fluorescence in target platelets. NO delivery was blocked by inhibition of PDI in a dose-dependent manner. In contrast, inhibition of GPx and L-AT had only a minimal effect on NO-related signalling. PDI activity is therefore required for the rapid delivery into platelets of NO-related signals from donors of all NO redox derivatives. GPx and the L-AT system appeared to be unimportant in rapid NO signalling by the compounds used in the present study. This does not, however, exclude a possible role during exposure of cells to other S-nitrosothiol compounds, such as S-nitrosocysteine. These results further highlight the importance of PDI in mediating the action of a wide range of NO-related signals.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2271-2271
Author(s):  
Arelys Ramos-Rivera ◽  
Alicia Rivera ◽  
Enrique D. Machado-Fiallo ◽  
Josue A. Benabe-Carlo ◽  
Gregory N. Prado ◽  
...  

Abstract Aldosterone (ALDO) has been shown to play an important role in inflammatory responses in addition to its well described effects on sodium homeostasis via activation of the mineralocorticoid receptor (MR). However, its effects on polymorphonuclear leukocytes (PMNC) are not well described. We isolated untouched circulating human PMNC by immunomagnetic isolation following density gradient sedimentation with PolymorphPrep from otherwise healthy subjects. Flow cytometric analyses showed greater than 97% of PMNC were positive for the myeloid-neutrophil markers, CD45, CD16 and CD66b. We show that PMNC express MR by western blot and RT-PCR analyses. We incubated PMNC with ALDO (10–9–10–7M) for 30 min and observed a dose-dependent rise in β–glucuronidase release with an EC50 of 6.11 nM (P<0.001, n=3), an event that was blocked by pre-incubation of cells with 1μM canrenoic acid (CA), an MR antagonist (P<0.04, n=3). In addition, our results show that incubation of human PMNC with 10-8M ALDO likewise led to increases in myeloperoxidase ([MPO], P<0.05, n=3) and protein disulfide isomerase ([PDI], P<0.01, n=4), a multifunctional enzyme of the thioredoxin superfamily that mediates redox modifications, regulates KCNN4 channel and erythrocyte volume and is up-regulated under hypoxic conditions (Prado, 2013 FASEB J). We then studied the effects of ALDO on HL-60, a human promyelocytic cell line, induced to differentiate into neutrophil-like cells by incubation for 5 days with 1.3% DMSO. Our results likewise show an increase in MPO responses upon 10–8M ALDO stimulation as compared to vehicle (AUC: 1090±147 to 505±48, P<0.02, n=3). We have recently reported that aldosterone stimulates increases of striatin, a scaffolding protein that interacts with caveolin-1, and co-precipitates with striatin and as such may facilitate cross talk of signaling complexes. As there are no pharmacological inhibitors of striatin we used a molecular approach to reduce striatin levels. In differentiated HL-60 cells, siRNA against striatin led to reduced MPO responses (AUC: 590±14 to 528±13, P<0.05, n=3) that were associated with significantly reduced striatin mRNA levels but not when cells were transfected with scrambled siRNA as determined by quantitative RT-PCR with ABI TaqMan detection probes and β-microglobulin used as an endogenous control (P<0.01, n=3). These results suggest that striatin plays an important role in ALDO-stimulated degranulation responses. Of importance we also observed that incubation with ALDO (10–9–10–7M) in differentiated HL60 cells led to increases in the oxidative-respiratory burst [superoxide production] in a dose- and time-dependent manner (P<0.01, n=4). Consistent with these results, we observed that ALDO likewise led to significant increases in the oxidative-respiratory burst in human PMNC (P<0.01, n=3). As there is evidence that activated neutrophils, MPO and PDI are elevated in Sickle Cell Disease, we studied the in vivo effects of MR blockade in BERK sickle transgenic mice, a model of increased oxidative stress. Sickle mice were randomized to receive either normal rodent chow or chow containing eplerenone (156 mg/kg per day), an MR receptor antagonist, and tap water ad libitum for 14 days at which time the mice were sacrificed and blood collected. We observed that mice on eplerenone had significantly lower plasma PDI activity than mice on regular chow (63.7 ± 8.7 control diet to 47.9 ± 2.4 eplerenone, Relative Fluorescence Units [RFU]; P<0.005, n=6 and 9) and lower MPO levels (AUC: 214±11 to 73±20, P<0.03, n=3); events that were associated with increases in both erythrocyte MCV (41.3±2.5 vs 47.4±1.1 fL, P<0.03, n=7) and reticulocyte MCV (53.6.3±2.8 vs 60.1±0.6 fL, P<0.02, n=7). Thus, our results suggest that MR activation by ALDO is a novel mechanism for neutrophil stimulation and as such represents a novel therapeutic target aimed at ameliorating the vascular complications of Sickle Cell Disease. Supported by NIH R01HL090632 (AR) and R01HL096518 (JRR). Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Author(s):  
Ricardo Perez-Fuentes ◽  
Patricia Pulido ◽  
Joshua Cazares ◽  
Yaritza Inostroza-Nieves ◽  
Enrique Torres-Rasgado ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document