scholarly journals Quercetin-3-Rutinoside Blocks the Disassembly of Cholera Toxin by Protein Disulfide Isomerase

Toxins ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 458 ◽  
Author(s):  
Jessica Guyette ◽  
Patrick Cherubin ◽  
Albert Serrano ◽  
Michael Taylor ◽  
Faisal Abedin ◽  
...  

Protein disulfide isomerase (PDI) is mainly located in the endoplasmic reticulum (ER) but is also secreted into the bloodstream where its oxidoreductase activity is involved with thrombus formation. Quercetin-3-rutinoside (Q3R) blocks this activity, but its inhibitory mechanism against PDI is not fully understood. Here, we examined the potential inhibitory effect of Q3R on another process that requires PDI: disassembly of the multimeric cholera toxin (CT). In the ER, PDI physically displaces the reduced CTA1 subunit from its non-covalent assembly in the CT holotoxin. This is followed by CTA1 dislocation from the ER to the cytosol where the toxin interacts with its G protein target for a cytopathic effect. Q3R blocked the conformational change in PDI that accompanies its binding to CTA1, which, in turn, prevented PDI from displacing CTA1 from its holotoxin and generated a toxin-resistant phenotype. Other steps of the CT intoxication process were not affected by Q3R, including PDI binding to CTA1 and CT reduction by PDI. Additional experiments with the B chain of ricin toxin found that Q3R could also disrupt PDI function through the loss of substrate binding. Q3R can thus inhibit PDI function through distinct mechanisms in a substrate-dependent manner.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2880-2880
Author(s):  
Pavan K Bendapudi ◽  
Roelof H Bekendam ◽  
Lin Lin ◽  
Mingdong Huang ◽  
Bruce Furie ◽  
...  

Abstract Vascular thiol isomerases comprise a family of enzymes including protein disulfide isomerase (PDI), ERp5, and ERp57 that are important in the process of thrombus formation. PDI is secreted at sites of vascular injury, and antibody-mediated PDI inhibition prevents thrombus formation in a mouse laser injury model. Our group has previously reported on the discovery of the small molecule PDI inhibitors quercetin-3-rutinoside and ML359. Identified as part of a high-throughput screen, ML359 is a second-generation PDI inhibitor that selectively blocks PDI oxidoreductase activity with approximately ten-fold the potency of quercetin-3-rutinoside. To better understand the mechanism of allosteric modulation of PDI by small molecules, we evaluated the association of ML359 with isolated domains of PDI, determined the effects of ML359 on a variety of PDI functions, and compared the activity of ML359 to that of quercetin-3-rutinoside. PDI is composed of four thioredoxin-like domains and an x-linker region in the sequence a-b-b’-x-a’. Major substrate binding is thought to occur in the b-b’ region while the a and a’ domains contain catalytically active cysteine motifs (CGHC) that mediate the oxidoreducase, nitrosylase, and thiol isomerase functions of PDI. In order to identify potential binding sites of ML359 on PDI, we constructed and expressed the domain fragments a, ab, abb’, b’xa’, and a’. These fragments were tested in the presence of 10 µM ML359 using an insulin turbidometric assay that measures the oxidoreductase activity of PDI. ML359 demonstrated full inhibition of oxidoreductase activity when full-length PDI and the b’xa’ fragment were used whereas no inhibition was observed with the other fragments assayed. These results are consistent with docking studies showing that ML359 likely binds in a pocket formed at the b’x interface. In contrast, when the same experiment was performed in the presence of 30 µM of quercetin-3-rutinoside, inhibition was only noted with full-length PDI and the abb’ and b’xa’ fragments, suggesting that binding was dependent on the b’ and not the x-linker region. To determine if ML359 has differential effects on the oxidoreductase and nitrosylase functions of PDI, we utilized a platelet-based assay in which fluorescence intensity stemming from the NO-sensitive intracellular dye DAF-FM was measured as an indicator of PDI-mediated translocation of NO from the extracellular surface into the cytosol (transnitrosylation). While quercetin-3-rutinoside potently inhibited PDI-mediated transnitrosylation activity, ML359 had no effect. These results are consistent with the idea that the transnitrosylase and oxidoreducase functions of PDI are separable and inhibition of either is specific to the small molecule used. We evaluated the ability of ML359 to inhibit thrombosis in a mouse laser injury model. Intravital microscopy was used to follow thrombus formation in mouse cremaster arterioles after laser-induced vascular injury. Infusion of ML359 resulted in inhibition of thrombus formation, in contrast to thrombosis seen after infusion of vehicle alone. In summary, ML359 is a second generation small molecule inhibitor of PDI that likely binds at the b’x interface of the enzyme. Furthermore, ML359 is able to selectively inhibit PDI oxidoreductase activity without affecting transnitrosylase activity. ML359 may prove a useful molecular probe to better understand the different functions of PDI relative to thrombus formation in vivo. Disclosures No relevant conflicts of interest to declare.


Cell ◽  
2001 ◽  
Vol 104 (6) ◽  
pp. 937-948 ◽  
Author(s):  
Billy Tsai ◽  
Chiara Rodighiero ◽  
Wayne I. Lencer ◽  
Tom A. Rapoport

2021 ◽  
Vol 15 (5) ◽  
pp. 396-407
Author(s):  
Mojiao Zhao ◽  
Chao Zhang ◽  
Dong Zhang ◽  
Siyu Zhu ◽  
Tianjiao Liu ◽  
...  

Inhibition of protein disulfide isomerase (PDI) has been attempted as a promising anti-cancer strategy. However, there is still no currently available PDI inhibitors approved for clinical use. Here, we isolated seven high yield alkaloids from Stephaniae tetrandrae Radix (STR), a medical herb frequently prescribed in anti-tumor condition, and identified two potent natural PDI inhibitors, dicentrine and dicentrinone. Among the seven alkaloids isolated, dicentrinone (1), dicentrine (2), tetrandrine (4), and fangchinoline (5) could significantly reduce cell viability in a dosage dependent manner detected by MTT assay in human hepatoma cells. To examine whether the candidate compounds are potent PDI inhibitors, we performed insulin turbidity assay and found dicentrine and dicentrinone, but not tetrandrine and fangchinoline, could effectively inhibit PDI activity, with IC50 of 56.70 μM and 43.95 μM respectively. Meanwhile, dicentrine and dicentrinone failed to further reduce the cell number index when co-treated with siRNA of PDI, suggesting the compounds behave as PDI inhibitors. Furthermore, dicentrinone and dicentrine have been successfully docked to the active pocket of PDI (PDB #3UEM) by molecular docking, suggesting the existence of physical interaction between compounds and PDI. Our results suggested that dicentrine and dicentrinone may be developed into safe PDI inhibitors.


2002 ◽  
Vol 159 (2) ◽  
pp. 207-216 ◽  
Author(s):  
Billy Tsai ◽  
Tom A. Rapoport

The toxic effect of cholera toxin (CT) on target cells is caused by its A1 chain. This polypeptide is released from the holotoxin and unfolded in the lumen of the ER by the action of protein disulfide isomerase (PDI), before being retrotranslocated into the cytosol. The polypeptide is initially unfolded by binding to the reduced form of PDI. We show that upon oxidation of the COOH-terminal disulfide bond in PDI by the enzyme Ero1, the A1 chain is released. Both yeast Ero1 and the mammalian Ero1α isoform are active in this reaction. Ero1 has a preference for the PDI–toxin complex. We further show that the complex is transferred to a protein at the lumenal side of the ER membrane, where the unfolded toxin is released from PDI by the action of Ero1. Taken together, our results identify Ero1 as the enzyme mediating the release of unfolded CT from PDI and characterize an additional step in retrotranslocation of the toxin.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 691-691 ◽  
Author(s):  
Reema Jasuja ◽  
Jaehyung Cho ◽  
Bruce Furie ◽  
Barbara Furie

Abstract We have previously reported that protein disulfide isomerase is required in wild-type mice for platelet thrombus formation and fibrin generation in an in vivo laser injury model of thrombosis (Cho et al. J. Clin. Invest., 2008; 118:1123–31). Fibrin deposition after laser injury to the vessel wall in Par4−/− mice, lacking the G protein-coupled platelet thrombin receptor, is independent of platelets or requires minimal platelet activation or accumulation (Vandendries et al. Proc. Natl. Acad. Sci., 2007; 104:288–92). However, protein disulfide isomerase inhibitors have a dramatic effect on fibrin accumulation in Par4− mice, suggesting that these inhibitors may function by a platelet independent mechanism. Here, we compare the contributions of endothelium and platelet-derived protein disulfide isomerase to fibrin generation in the mouse laser injury model of thrombosis. In vitro studies using cultured human umbilical vein endothelial cells and human aortic endothelial cells show that protein disulfide isomerase can be secreted rapidly into the culture medium from these cells upon thrombin stimulation. Using intravital microscopy, we observe that protein disulfide isomerase is not detectable on the vessel wall prior to laser injury but can be detected on the injured cremaster arteriolar wall and in the developing thrombus very rapidly after laser induced injury in the live mouse. The median integrated fluorescence intensity for protein disulfide isomerase in wild-type mice was compared to wild-type mice injected with 10ug/g mouse of Integrilin, an inhibitor of platelet activation and platelet thrombus formation, and thus, an inhibitor of the contribution of platelet derived protein disulfide isomerase to thrombus formation. Protein disulfide isomerase expression was similar in both treated and untreated animals upto 30 seconds post-laser injury. After 30 seconds, the expression of protein disulfide isomerase in integrilin treated mice was significantly decreased compared to that in untreated mice, indicating that the initial protein disulfide isomerase was derived from the endothelium and later additional protein disulfide isomerase was derived from the platelets following their accumulation in the developing thrombus. Fibrin deposition, a measure of thrombin generation was comparable in wild-type mice that had been treated with Integrilin or treated with a control buffer, suggesting that endothelial-derived protein disulfide isomerase was sufficient for fibrin generation. The rate and amount of fibrin generation was indistinguishable in both groups. Furthermore, inhibition of the protein disulfide isomerase with the function blocking monoclonal antibody RL-90 (3ug/g mouse) eliminated any fibrin deposition in wild-type mice that had been treated with Integrilin. Taken together, these data indicate that endothelium-derived protein disulfide isomerase is necessary to support fibrin deposition in vivo in our laser injury model of thrombus formation. The initial protein disulfide isomerase expressed at the site of injury is derived from endothelial cells but platelets activated at the site of thrombus formation contribute, amplify and sustain protein disulfide isomerase expression.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2168-2168
Author(s):  
Lu Wang ◽  
Yi Wu ◽  
Junsong Zhou ◽  
Syed S. Ahmad ◽  
Bulent Mutus ◽  
...  

Abstract Abstract 2168 Several members of the protein disulfide isomerase family of enzymes are important in platelet function and in thrombosis. Platelet protein disulfide isomerase (PDI) has been shown to have an important role in platelet function but is reported to not be required for thrombus formation in vivo. A novel platelet PDI called ERp57 mediates platelet aggregation but its role in thrombus formation is unknown. To determine the specific role of platelet-derived ERp57 in hemostasis and thrombosis we generated a megakaryocyte/platelet specific knockout. Despite normal platelet counts and platelet glycoprotein expression, mice with ERp57-deficient platelets had prolonged tail-bleeding times and thrombus occlusion times, and defective activation of the αIIbβ3 integrin and platelet aggregation. The aggregation defect was corrected by addition of exogenous ERp57 implicating surface ERp57 in platelet aggregation. Platelet surface ERp57 protein and activity increased substantially with platelet activation. We conclude that platelet-derived ERp57 is required for hemostasis and thrombosis and platelet function. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document