Aero-Micro-Electromechanical System Sensor Arrays for Time Resolved Wall Pressure Measurements

AIAA Journal ◽  
2009 ◽  
Vol 47 (4) ◽  
pp. 863-873 ◽  
Author(s):  
A. Berns ◽  
U. Buder ◽  
E. Obermeier ◽  
A. Wolter ◽  
A. Leder ◽  
...  
Author(s):  
Dan Tian ◽  
Chun-Hui He

Pull-in instability occurs in a micro-electromechanical system, and it greatly hinders its normal operation. A fractal modification is suggested to make the system stable in all operation period. A fractal model is established using a fractal derivative, and the results show that by suitable fabrication of the micro-electromechanical system device, the pull-in instability can be converted into a novel state of pull-in stability.


1988 ◽  
Vol 92 (911) ◽  
pp. 36-53 ◽  
Author(s):  
P. R. Ashill ◽  
R. F. A. Keating

Summary A method is described for calculating wall interference in solid-wall wind tunnels from measurements of static pressures at the walls. Since it does not require a simulation of the model flow, the technique is particularly suited to determining wall interference for complex flows such as those over VSTOL aircraft, helicopters and bluff shapes (e.g. cars and trucks). An experimental evaluation shows that the method gives wall-induced velocities which are in good agreement with those of existing methods in cases where these techniques are valid, and illustrates its effectiveness for inclined jets which are not readily modelled.


Author(s):  
Fabian F. Müller ◽  
Markus Schatz ◽  
Damian M. Vogt ◽  
Jens Aschenbruck

The influence of a cylindrical strut shortly downstream of the bladerow on the vibration behavior of the last stage rotor blades of a single stage LP model steam turbine was investigated in the present study. Steam turbine retrofits often result in an increase of turbine size, aiming for more power and higher efficiency. As the existing LP steam turbine exhaust hoods are generally not modified, the last stage rotor blades frequently move closer to installations within the exhaust hood. To capture the influence of such an installation on the flow field characteristics, extensive flow field measurements using pneumatic probes were conducted at the turbine outlet plane. In addition, time-resolved pressure measurements along the casing contour of the diffuser and on the surface of the cylinder were made, aiming for the identification of pressure fluctuations induced by the flow around the installation. Blade vibration behavior was measured at three different operating conditions by means of a tip timing system. Despite the considerable changes in the flow field and its frequency content, no significant impact on blade vibration amplitudes were observed for the investigated case and considered operating conditions. Nevertheless, time-resolved pressure measurements suggest that notable pressure oscillations induced by the vortex shedding can reach the upstream bladerow.


Sign in / Sign up

Export Citation Format

Share Document