Modeling Subscale Rotor Wake in Ground Effect with Accurate Turbulent Length Scales

AIAA Journal ◽  
2017 ◽  
Vol 55 (9) ◽  
pp. 3085-3094 ◽  
Author(s):  
Tarandeep S. Kalra ◽  
James D. Baeder
2020 ◽  
Vol 65 (3) ◽  
pp. 1-20
Author(s):  
Clemens Schwarz ◽  
Andŕe Bauknecht ◽  
C. Christian Wolf ◽  
Alexander Coyle ◽  
Markus Raffel

Measurements in the wake of a free-flying full-scale helicopter in ground effect were performed for both quasi-steady and unsteady maneuvering flights using stereoscopic particle image velocimetry (PIV), a time-resolved background-oriented schlieren (BOS) setup, and an optical marker tracking technique. The systems were used in a complementary way to both visualize blade tip vortices in a large portion of the rotor wake and to capture spatially resolved wake velocity data close to the ground. The high sensitivity of the BOS system enabled the detection of vortices up to an age of ψ = 630°. Different instability mechanisms as long-wave, short-wave, and pairing instabilities were observed with varying intensity for different flight conditions. A quantitative analysis of vortex locations showed a periodic variation resulting from interactions between consecutive vortices that led to vortex pairing. Characteristics of the wake outwash close to the ground were investigated by means of averaged velocity fields. Different patterns such as wall jet, recirculation, and ground vortex flow were quantitatively analyzed and found to be in good agreement with previous model helicopter experiments. The instantaneous velocity data were used to detect individual blade tip vortices with ages above 450° close to the ground and to extract vortex parameters. For a takeoff maneuver, both concentrated vortices and the formation of larger vortex structures due to bundling of several vortices were observed.


Author(s):  
Takashi Saijo ◽  
Balakrishnan Ganesh ◽  
A. Huang ◽  
Narayanan Komerath
Keyword(s):  

2012 ◽  
Vol 40 (2) ◽  
pp. 124-150
Author(s):  
Klaus Wiese ◽  
Thiemo M. Kessel ◽  
Reinhard Mundl ◽  
Burkhard Wies

ABSTRACT The presented investigation is motivated by the need for performance improvement in winter tires, based on the idea of innovative “functional” surfaces. Current tread design features focus on macroscopic length scales. The potential of microscopic surface effects for friction on wintery roads has not been considered extensively yet. We limit our considerations to length scales for which rubber is rough, in contrast to a perfectly smooth ice surface. Therefore we assume that the only source of frictional forces is the viscosity of a sheared intermediate thin liquid layer of melted ice. Rubber hysteresis and adhesion effects are considered to be negligible. The height of the liquid layer is driven by an equilibrium between the heat built up by viscous friction, energy consumption for phase transition between ice and water, and heat flow into the cold underlying ice. In addition, the microscopic “squeeze-out” phenomena of melted water resulting from rubber asperities are also taken into consideration. The size and microscopic real contact area of these asperities are derived from roughness parameters of the free rubber surface using Greenwood-Williamson contact theory and compared with the measured real contact area. The derived one-dimensional differential equation for the height of an averaged liquid layer is solved for stationary sliding by a piecewise analytical approximation. The frictional shear forces are deduced and integrated over the whole macroscopic contact area to result in a global coefficient of friction. The boundary condition at the leading edge of the contact area is prescribed by the height of a “quasi-liquid layer,” which already exists on the “free” ice surface. It turns out that this approach meets the measured coefficient of friction in the laboratory. More precisely, the calculated dependencies of the friction coefficient on ice temperature, sliding speed, and contact pressure are confirmed by measurements of a simple rubber block sample on artificial ice in the laboratory.


Sign in / Sign up

Export Citation Format

Share Document