Characterization of Rotor Wake in Ground Effect

Author(s):  
Gino M. Perrotta
Keyword(s):  
2021 ◽  
Author(s):  
Ayush Saraswat ◽  
Subhra Shankha Koley ◽  
Joseph Katz

Abstract Ongoing experiments conducted in a one-and-half stages axial compressor installed in the JHU refractive index-matched facility investigate the evolution of flow structure across blade rows. After previously focusing only on the rotor tip region, the present stereo-PIV (SPIV) measurements are performed in a series of axial planes covering an entire passage across the machine, including upstream of the IGV, IGV-rotor gap, rotor-stator gap, and downstream of the stator. The measurements are performed at flow rates corresponding to pre-stall condition and best efficiency point (BEP). Data are acquired for various rotor-blade orientations relative to the IGV and stator blades. The results show that at BEP, the wakes of IGV and rotor are much more distinct and the wake signatures of one row persists downstream of the next, e.g., the flow downstream of the stator is strongly affected by the rotor orientation. In contrast, under pre-stall conditions, the rotor orientation has minimal effect on the flow structure downstream of the stator. However, the wakes of the stator blades, where the axial momentum is low, are now wider. For both conditions, the flow downstream of the rotor is characterized by two regions of axial momentum deficit in addition to the rotor wake. A deficit on the pressure side of the rotor wake tip is associated with the tip leakage vortex (TLV) of the previous rotor blade, and is much broader at pre-stall condition. A deficit on the suction side of the rotor wake near the hub appears to be associated with the hub vortex generated by the neighboring blade, and is broader at BEP. At pre-stall, while the axial momentum upstream of the rotor decreases over the entire tip region, it is particularly evident near the rotor blade tip, where the instantaneous axial velocity becomes intermittently negative. Downstream of the rotor, there is a substantial reduction in mean axial momentum in the upper half of the passage, concurrently with an increase in the circumferential velocity. Consequently, the incidence angle upstream of the stator increases in certain regions by up to 30 degrees. These observations suggest that while the onset of the stall originates from the rotor tip flow, one must examine its impact on the flow structure in the stator passage as well.


2020 ◽  
Vol 65 (3) ◽  
pp. 1-20
Author(s):  
Clemens Schwarz ◽  
Andŕe Bauknecht ◽  
C. Christian Wolf ◽  
Alexander Coyle ◽  
Markus Raffel

Measurements in the wake of a free-flying full-scale helicopter in ground effect were performed for both quasi-steady and unsteady maneuvering flights using stereoscopic particle image velocimetry (PIV), a time-resolved background-oriented schlieren (BOS) setup, and an optical marker tracking technique. The systems were used in a complementary way to both visualize blade tip vortices in a large portion of the rotor wake and to capture spatially resolved wake velocity data close to the ground. The high sensitivity of the BOS system enabled the detection of vortices up to an age of ψ = 630°. Different instability mechanisms as long-wave, short-wave, and pairing instabilities were observed with varying intensity for different flight conditions. A quantitative analysis of vortex locations showed a periodic variation resulting from interactions between consecutive vortices that led to vortex pairing. Characteristics of the wake outwash close to the ground were investigated by means of averaged velocity fields. Different patterns such as wall jet, recirculation, and ground vortex flow were quantitatively analyzed and found to be in good agreement with previous model helicopter experiments. The instantaneous velocity data were used to detect individual blade tip vortices with ages above 450° close to the ground and to extract vortex parameters. For a takeoff maneuver, both concentrated vortices and the formation of larger vortex structures due to bundling of several vortices were observed.


2019 ◽  
Vol 64 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Clemens Schwarz ◽  
André Bauknecht ◽  
Stephan Mailänder ◽  
Markus Raffel

2018 ◽  
Vol 176 ◽  
pp. 06001 ◽  
Author(s):  
Songhua Wu ◽  
Xiaochun Zhai ◽  
Bingyi Liu ◽  
Jintao Liu

Field observations for the wake vortices by Coherent Doppler Lidar (CDL) have been carried out at the Beijing Capital International Airport (BCIA) and Tianjin Binhai International Airport (TBIA) to investigate the wake vortices evolution characteristics and the near-ground effect. This paper introduces the dynamic wake vortices and atmospheric turbulence monitoring technique, successfully demonstrating that the CDL can capture the key characteristics of wake vortices in real-time, including wake vortices intensity, spatial-temporal evolution and so forth.


AIAA Journal ◽  
2017 ◽  
Vol 55 (9) ◽  
pp. 3085-3094 ◽  
Author(s):  
Tarandeep S. Kalra ◽  
James D. Baeder

2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Pedro Sanchez-Cuevas ◽  
Guillermo Heredia ◽  
Anibal Ollero

This paper analyzes the ground effect in multirotors, that is, the change in the thrust generated by the rotors when flying close to the ground due to the interaction of the rotor airflow with the ground surface. This effect is well known in single-rotor helicopters but has been assumed erroneously to be similar for multirotors in many cases in the literature. In this paper, the ground effect for multirotors is characterized with experimental tests in several cases and the partial ground effect, a situation in which one or some of the rotors of the multirotor (but not all) are under the ground effect, is also characterized. The influence of the different cases of ground effect in multirotor control is then studied with several control approaches in simulation and validated with experiments in a test bench and with outdoor flights.


Sign in / Sign up

Export Citation Format

Share Document