Numerical Investigation of the Turbulent Mixing Performance of a Cantilevered Ramp Injector

AIAA Journal ◽  
2002 ◽  
Vol 40 (8) ◽  
pp. 1559-1566 ◽  
Author(s):  
Bernard Parent ◽  
Jean P. Sislian ◽  
Jurgen Schumacher
AIAA Journal ◽  
2002 ◽  
Vol 40 ◽  
pp. 1559-1566
Author(s):  
B. Parent ◽  
J. P. Sislian ◽  
J. Schumacher

Author(s):  
Romain Fiévet ◽  
Stephen J. Voelkel ◽  
Venkatramanan Raman ◽  
Philip L. Varghese

Author(s):  
Md. Readul Mahmud

The fluids inside passive micromixers are laminar in nature and mixing depends primarily on diffusion. Hence mixing efficiency is generally low, and requires a long channel length and longtime compare to active mixers. Various designs of complex channel structures with/without obstacles and three-dimensional geometries have been investigated in the past to obtain an efficient mixing in passive mixers. This work presents a design of a modified T mixer. To enhance the mixing performance, circular and hexagonal obstacles are introduced inside the modified T mixer. Numerical investigation on mixing and flow characteristics in microchannels is carried out using the computational fluid dynamics (CFD) software ANSYS 15. Mixing in the channels has been analyzed by using Navier–Stokes equations with water-water for a wide range of the Reynolds numbers from 1 to 500. The results show that the modified T mixer with circular obstacles has far better mixing performance than the modified T mixer without obstacles. The reason is that fluids' path length becomes longer due to the presence of obstacles which gives fluids more time to diffuse. For all cases, the modified T mixer with circular obstacle yields the best mixing efficiency (more than 60%) at all examined Reynolds numbers. It is also clear that efficiency increase with axial length. Efficiency can be simply improved by adding extra mixing units to provide adequate mixing. The value of the pressure drop is the lowest for the modified T mixer because there is no obstacle inside the channel. Modified T mixer and modified T mixer with circular obstacle have the lowest and highest mixing cost, respectively. Therefore, the current design of modified T with circular obstacles can act as an effective and simple passive mixing device for various micromixing applications.


Author(s):  
Richard Bergman ◽  
Alexander Efremov ◽  
Pierre Woehl

Mixing of fluids is a common and often critical step in microfluidic systems. In typical large scale processes turbulence greatly speeds the mixing process. At the mini and micro-scales, however, the flow is laminar and the benefits of turbulent mixing are not present. Mixing at the mini- and micro-scales tends to become a more highly engineered process of bringing fluids together in predictable ways to achieve a predetermined and acceptable level of mixing. This paper summarizes a numerical analysis of the mixing performance of a vaned circular micromixer. A newly developed mixing metric suitable for reacting fluids is developed for this study. Applying the basic steps of stretching, cutting, and stacking to effect mixing, a useful micromixer is analyzed numerically for its mixing efficiency. A parametric study of flow and viscosity indicate that a flow Re of 12 or higher is sufficient to achieve effective and rapid mixing in this device.


Sign in / Sign up

Export Citation Format

Share Document