DYNAMIC RESPONSE OF AN ELASTIC PLATE STRIP TO A MOVING LINE LOAD

AIAA Journal ◽  
1963 ◽  
Vol 1 (2) ◽  
pp. 354-360 ◽  
Author(s):  
HERBERT REISMANN
AIAA Journal ◽  
1963 ◽  
Vol 1 (10) ◽  
pp. 2412a-2412a
Author(s):  
WILLIAM E. THOMPSON

2017 ◽  
Vol 26 (3) ◽  
pp. 255-262
Author(s):  
AHMET DASDEMIR ◽  

Within the scope of the piecewise homogeneous body model with utilizing of the three dimensional linearized theory of elastic waves in initially stressed bodies the dynamical stress field problem in a bi-layered plate-strip with initial stress under the action of an arbitrary inclined timeharmonic force resting on a rigid foundation is investigated. The concrete materials such as a pair of Aluminum and Steel are selected. It is assumed that there exists a complete contact interaction between the layers. The mathematical modeling of the problem under consideration is carved out, and the governing system of the partial differential equations of motion is approximately solved by employing Finite Element Method. The numerical results related to the influence of certain parameters on the dynamic response of the plate-strip are presented.


2000 ◽  
Vol 68 (2) ◽  
pp. 348-350 ◽  
Author(s):  
Lu Sun

Fourier transform is used to solve the problem of steady-state response of a beam on an elastic Winkler foundation subject to a moving constant line load. Theorem of residue is employed to evaluate the convolution in terms of Green’s function. A closed-form solution is presented with respect to distinct Mach numbers. It is found that the response of the beam goes to unbounded as the load travels with the critical velocity. The maximal displacement response appears exactly under the moving load and travels at the same speed with the moving load in the case of Mach numbers being less than unity.


2002 ◽  
Author(s):  
Zhengxing Liu ◽  
Hongyun Li

Based on classical laminated plate theory and Navier solutions, the control of the piezoelastic laminated cylindrical shell’s dynamic response under hydrostatic pressure is discussed in this paper. Considering the direct and inverse piezoelectric effects of piezoelectric materials and from Hamilton’s principle, the nonlinear dynamic equations of the piezoelastic laminated cylindrical shell are derived first. Using close circuit method, the charge enclosed in the piezoelectric sensor layer can be measured. Furthermore, the voltage applied on the actuator layer can be obtained based on the closed-circuit charge signal of the sensor and velocity negative feedback control algorithm. An active dynamic response control model of simply supported laminated cylindrical shells with piezoelectric sensor/actuator under various dynamic loads is established in this paper at last. Three types of loading conditions, namely sinusoidal distributed load, line load and moving point load, are considered in numerical examples to investigate the performance of the control model. The numerical results show that the active control model presented in this paper can suppress the vibration of the structure under dynamic loading effectively.


Sign in / Sign up

Export Citation Format

Share Document