Closed-Form Representation of Beam Response to Moving Line Loads

2000 ◽  
Vol 68 (2) ◽  
pp. 348-350 ◽  
Author(s):  
Lu Sun

Fourier transform is used to solve the problem of steady-state response of a beam on an elastic Winkler foundation subject to a moving constant line load. Theorem of residue is employed to evaluate the convolution in terms of Green’s function. A closed-form solution is presented with respect to distinct Mach numbers. It is found that the response of the beam goes to unbounded as the load travels with the critical velocity. The maximal displacement response appears exactly under the moving load and travels at the same speed with the moving load in the case of Mach numbers being less than unity.

1973 ◽  
Vol 40 (1) ◽  
pp. 137-142 ◽  
Author(s):  
T. C. Kennedy ◽  
G. Herrmann

The steady-state response of a semi-infinite solid with an overlying semi-infinite fluid subjected at the plane interface to a moving point load is determined for supersonic load velocities. The exact, closed-form solution valid for the entire space is presented. Some numerical results for the displacements at the interface are calculated and compared to the results obtained when no fluid is present.


2020 ◽  
Vol 223 (2) ◽  
pp. 1446-1459
Author(s):  
Xi Feng ◽  
Haiming Zhang

SUMMARY In this paper, we report on an exact closed-form solution for the displacement in an elastic homogeneous half-space elicited by a downward vertical point source moving with constant velocity over the surface of the medium. The problem considered here is an extension to Lamb’s problem. Starting with the integral solutions of Bakker et al., we followed the method developed by Feng and Zhang, which focuses on the displacement triggered by a fixed point source observed on the free surface, to obtain the final solution in terms of elementary algebraic functions as well as elliptic integrals of the first, second and third kind. Our closed-form results agree perfectly with the numerical results of Bakker et al., which confirms the correctness of our formulae. The solution obtained in this paper may lay a solid foundation for further consideration of the response of an actual physical moving load, such as a high-speed rail train.


2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Richard Bäumer ◽  
Uwe Starossek

In previous research, the twin rotor damper (TRD), an active mass damper, was presented including control algorithms for monofrequent vibrations. In a preferred mode of operation, the continuous rotation mode, two eccentric masses rotate in opposite directions about two parallel axes with a mostly constant angular velocity. The resulting control force is harmonic. Within this paper, the steady-state response of a single-degree-of-freedom (SDOF) oscillator subjected to a harmonic excitation force with and without the TRD is studied. A closed-form solution is presented and validated experimentally. It is shown that the TRD provides damping to the SDOF oscillator until a certain frequency ratio is reached. The provided damping is not only dependent on the design parameters of the TRD but also depends on the steady-state vibration amplitude. The solution serves as a powerful design tool for dimensioning the TRD. The analytical closed-form solution is applicable for other active mass dampers.


Author(s):  
Liu Wei ◽  
T. F. Fwa

The development and application of a theoretical closed-form solution of a six-slab, thick-plate model for the structural design and analysis of an edge slab in jointed concrete pavement subjected to vertical loads are described. The jointed concrete pavement system is idealized as a six-slab system resting on a Winkler foundation. The six slabs are arranged in two rows with three slabs in each row. The loaded slab of interest is represented by a middle slab with five surrounding slabs to consider the effects of jointed pavement system. Fundamental equations of the proposed model were derived from thick-plate theory. Solutions of the fundamental equations were obtained by superposition of the solutions of appropriate elemental slabs. The validity of the proposed solutions was checked against finite element solutions. The six-slab model was applied to analyze the critical stresses and deflections of an edge slab under the following three loading conditions: interior, edge, and corner loadings. Comparisons of the computed critical stresses and deflections were made with Westergaard's solutions. Westergaard's solutions were found to overestimate the maximum bending stresses and deflections for large slabs but to tend to underestimate these pavement responses for small slabs. The likelihood of underestimation by Westergaard's solutions also increased as the load transfer efficiency of pavement joints fell.


2013 ◽  
Vol 40 (2) ◽  
pp. 106-114
Author(s):  
J. Venetis ◽  
Aimilios (Preferred name Emilios) Sideridis

Sign in / Sign up

Export Citation Format

Share Document