A case study - F-16 Ada Digital Flight Control System

1988 ◽  
Author(s):  
KEN GARLINGTON ◽  
AMY TYRRELL
2021 ◽  
Author(s):  
Haluk Altay ◽  
M. Furkan Solmazgül

Systems engineering is the most important branch of engineering in interdisciplinary study. Successfully performing a multidisciplinary complex system is one of the most challenging tasks of systems engineering. Multidisciplinary study brings problems such as defining complex systems, ensuring communication between stakeholders, and common language among different design teams. In solving such problems, traditional systems engineering approach cannot provide an efficient solution. In this paper, a model-based systems engineering approach is applied with a case study and the approach is found to be more efficient. In the case study, the design of the helicopter automatic flight control system was realized by applying model-based design processes with integration of tools. Requirement management, system architecture management and model-based systems engineering processes are explained and applied of the case study. Finally, model-based systems engineering approach is proven to be effective compared with the traditional systems engineering methods for complex systems in aviation and defence industries.


2008 ◽  
Vol 112 (1137) ◽  
pp. 663-672
Author(s):  
M. Voskuijl ◽  
D. J. Walker ◽  
B. J. Manimala

Abstract This paper discusses how structural load objectives can be included in a rotorcraft flight control system design in an efficient and straightforward way using multivariable control techniques. Several research studies have indicated that pitch link loads for various rotorcraft types can reach high or even unacceptable values, both in steady state and maneuvering flight. This is especially the case for high-speed aggressive maneouvers. Pitch link loads at high-speed flight are therefore taken as a case study. A novel longitudinal control system is presented, designed to reduce helicopter pitch-link loads during high-speed longitudinal manoeuvres whilst providing a pitch attitude command attitude hold response type. The design is based on a high-order model of a helicopter representative of the UH-60 Black Hawk. New metrics are presented for the analysis of structural loads that can be used in combination with ADS-33 handling qualities requirements.


Sign in / Sign up

Export Citation Format

Share Document