Interplanetary trajectory optimization using a genetic algorithm

Author(s):  
P. Cage ◽  
I. Kroo ◽  
R. Braun
2020 ◽  
Vol 10 (3) ◽  
pp. 935 ◽  
Author(s):  
Haibo Zhou ◽  
Shun Zhou ◽  
Jia Yu ◽  
Zhongdang Zhang ◽  
Zhenzhong Liu

In order to realize the technique of quick picking and obstacle avoidance, this work proposes a trajectory optimization method for the pickup manipulator under the obstacle condition. The proposed method is based on the improved artificial potential field method and the cosine adaptive genetic algorithm. Firstly, the Denavit–Hartenberg (D-H) method is used to carry out the kinematics modeling of the pickup manipulator. Taking into account the motion constraints, the cosine adaptive genetic algorithm is utilized to complete the time-optimal trajectory planning. Then, for the collision problem in the obstacle environment, the artificial potential field method is used to establish the attraction, repulsion, and resultant potential field functions. By improving the repulsion potential field function and increasing the sub-target point, obstacle avoidance planning of the improved artificial potential field method is completed. Finally, combined with the improved artificial potential field method and cosine adaptive genetic algorithm, the movement simulation analysis of the five-Degree-of-Freedom pickup manipulator is carried out. The trajectory optimization under the obstacle environment is realized, and the picking efficiency is improved.


2012 ◽  
Vol 466-467 ◽  
pp. 1095-1099
Author(s):  
Liu Xu ◽  
Wei Min Li ◽  
Lin Zhang ◽  
An Tang Zhang

The Optimal trajectory design for hypersonic cruise missile is an optimal control problem with strict terminal constraints and variable final time. The classical algorithms always encounter the problems of high sensitivity to initial guess and local convergence in solving this problem. Aiming at these problems, genetic algorithm (GA) which is of good global convergence is applied to designing the optimal trajectory for hypersonic cruise missile. In order to improve the convergence rate of GA and overcome its premature problems, this text introduces a predatory search (PS) strategy to speed the convergence of genetic algorithms, robust and closer to the optimal solution. This text compares the original genetic algorithm (GA) and improved genetic algorithm by the emulate experiments, and the results show that the PSGA is a more effective method to design the Optimal trajectory for hypersonic cruise missile than the original genetic algorithm.


2014 ◽  
Vol 487 ◽  
pp. 664-669 ◽  
Author(s):  
Long Zhang ◽  
Qing Xuan Jia ◽  
Gang Chen ◽  
Han Xu Sun

Aiming at on-orbit capture task, a Genetic Algorithm based approach for pre-collision trajectory optimization with multi-targets is proposed in this paper. Through the analysis of task characteristics, multi-targets before collision are presented, which contain the point-to-point manoeuvre, impact pose control and impact impulse minimization. Genetic algorithm is employed to optimize the pre-collision trajectory after integrating multi-targets by setting task weight. At last, the simulation results verify the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document