Aero-acoustic study on a NACA 0012 aerofoil

1997 ◽  
Author(s):  
C. Swales ◽  
M. Lowson ◽  
C. Swales ◽  
M. Lowson
Keyword(s):  
1988 ◽  
Vol 49 (C8) ◽  
pp. C8-1059-C8-1060
Author(s):  
P. Doussineau ◽  
A. Levelut ◽  
W. Schön
Keyword(s):  

Author(s):  
Abhineet Singh ◽  
Sonali Mitra ◽  
S.V.H. Nagendra ◽  
Pragyan Jain

The present paper deals with the selection of airfoil profile for VAWTs which is to be installed in the college campus, located in Central India region. Both experimental and numerical analysis he been carried out for the three selected airfoils, NACA 0012, NACA 0015 & S2027. The results show a good correlation with the existing literature. Airfoil profile S2027 has been chosen which best suits our condition. 


2020 ◽  
Vol 25 (2) ◽  
pp. 69-89
Author(s):  
Seonjeong Lee ◽  
Yong-Kwon Lee
Keyword(s):  

2019 ◽  
Author(s):  
Adèle Jatteau ◽  
Ioana Vasilescu ◽  
Lori Lamel ◽  
Martine Adda-Decker ◽  
Nicolas Audibert
Keyword(s):  

Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 828
Author(s):  
Igor Rodriguez-Eguia ◽  
Iñigo Errasti ◽  
Unai Fernandez-Gamiz ◽  
Jesús María Blanco ◽  
Ekaitz Zulueta ◽  
...  

Trailing edge flaps (TEFs) are high-lift devices that generate changes in the lift and drag coefficients of an airfoil. A large number of 2D simulations are performed in this study, in order to measure these changes in aerodynamic coefficients and to analyze them for a given Reynolds number. Three different airfoils, namely NACA 0012, NACA 64(3)-618, and S810, are studied in relation to three combinations of the following parameters: angle of attack, flap angle (deflection), and flaplength. Results are in concordance with the aerodynamic results expected when studying a TEF on an airfoil, showing the effect exerted by the three parameters on both aerodynamic coefficients lift and drag. Depending on whether the airfoil flap is deployed on either the pressure zone or the suction zone, the lift-to-drag ratio, CL/CD, will increase or decrease, respectively. Besides, the use of a larger flap length will increase the higher values and decrease the lower values of the CL/CD ratio. In addition, an artificial neural network (ANN) based prediction model for aerodynamic forces was built through the results obtained from the research.


2021 ◽  
Vol 62 (5) ◽  
Author(s):  
Erik Schneehagen ◽  
Thomas F. Geyer ◽  
Ennes Sarradj ◽  
Danielle J. Moreau

Abstract One known method to reduce vortex shedding from the tip of a blade is the use of end plates or winglets. Although the aerodynamic impact of such end plates has been investigated in the past, no studies exist on the effect of such end plates on the far-field noise. The aeroacoustic noise reduction of three different end-plate geometries is experimentally investigated. The end plates are applied to the free end of a wall-mounted symmetric NACA 0012 airfoil and a cambered NACA 4412 airfoil with an aspect ratio of 2 and natural boundary layer transition. Microphone array measurements are taken in the aeroacoustic open-jet wind tunnel at BTU Cottbus-Senftenberg for chord-based Reynolds numbers between 75,000 and 225,000 and angles of attack from 0$$^\circ$$ ∘ to 30$$^\circ$$ ∘ . The obtained acoustic spectra show a broad frequency hump for the airfoil base configurations at higher angles of attack that is attributed to tip noise. Hot-wire measurements taken for one configuration show that the application of an end plate diffuses the vorticity at the tip. The aeroacoustic noise contribution of the tip can be reduced when the endplates are applied. This reduction is most effective for higher angles of attack, when the tip vortex is the dominant sound source. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document