Anisotropy of Compressible MHD Turbulence in a Mean Magnetic Field

Author(s):  
Foluso Ladeinde ◽  
Datta Gaitonde
Author(s):  
Vincenzo CARBONE ◽  
Pierluigi VELTRI ◽  
Andre’ MANGENEY

1993 ◽  
Vol 157 ◽  
pp. 255-261
Author(s):  
N. Kleeorin ◽  
I. Rogachevskii

The nonlinear (in terms of the large-scale magnetic field) effect of the modification of the magnetic force by an advanced small-scale magnetohydrodynamic (MHD) turbulence is considered. The phenomenon is due to the generation of magnetic fluctuations at the expense of hydrodynamic pulsations. It results in a decrease of the elasticity of the large-scale magnetic field.The renormalization group (RNG) method was employed for the investigation of the MHD turbulence at the large magnetic Reynolds number. It was found that the level of the magnetic fluctuations can exceed that obtained from the equipartition assumption due to the inverse energy cascade in advanced MHD turbulence.This effect can excite an instability of the large-scale magnetic field due to the energy transfer from the small-scale turbulent pulsations. This instability is an example of the inverse energy cascade in advanced MHD turbulence. It may act as a mechanism for the large-scale magnetic ropes formation in the solar convective zone and spiral galaxies.


2004 ◽  
Vol 22 (10) ◽  
pp. 3751-3769 ◽  
Author(s):  
R. Bruno ◽  
V. Carbone ◽  
L. Primavera ◽  
F. Malara ◽  
L. Sorriso-Valvo ◽  
...  

Abstract. In spite of a large number of papers dedicated to the study of MHD turbulence in the solar wind there are still some simple questions which have never been sufficiently addressed, such as: a) Do we really know how the magnetic field vector orientation fluctuates in space? b) What are the statistics followed by the orientation of the vector itself? c) Do the statistics change as the wind expands into the interplanetary space? A better understanding of these points can help us to better characterize the nature of interplanetary fluctuations and can provide useful hints to investigators who try to numerically simulate MHD turbulence. This work follows a recent paper presented by some of the authors which shows that these fluctuations might resemble a sort of random walk governed by Truncated Lévy Flight statistics. However, the limited statistics used in that paper did not allow for final conclusions but only speculative hypotheses. In this work we aim to address the same problem using more robust statistics which, on the one hand, forces us not to consider velocity fluctuations but, on the other hand, allows us to establish the nature of the governing statistics of magnetic fluctuations with more confidence. In addition, we show how features similar to those found in the present statistical analysis for the fast speed streams of solar wind are qualitatively recovered in numerical simulations of the parametric instability. This might offer an alternative viewpoint for interpreting the questions raised above.


2017 ◽  
Vol 26 (1) ◽  
Author(s):  
Alexander E. Dudorov ◽  
Sergey A. Khaibrakhmanov

AbstractProperties of the hierarchical structures of interstellar molecular clouds are discussed. Particular attention is paid to the statistical correlations between velocity dispersion and size, and between the magnetic field strength and gas density. We investigate the formation of some hierarchical structures with the help of numerical MHD simulations using the ENLIL code. The simulations show that the interstellar molecular filaments with parallel magnetic field and molecular cores can form via the collapse and fragmentation of cylindrical molecular clouds. The parallelmagnetic field halts the radial collapse of the cylindrical cloud maintaining its nearly constant radius ~0.1 pc. The observed filaments with perpendicularmagnetic field can form as a result of themagnetostatic contraction of oblate molecular clouds under the action of Alfvén and MHD turbulence. The theoretical density profiles are fitted with the Plummer-like function and agree with observed profiles of the filaments in Gould’s Belt. The characteristics of molecular cloud cores found in our simulations are in agreement with observations.


1995 ◽  
Vol 12 (2) ◽  
pp. 159-164 ◽  
Author(s):  
John F. Hawley ◽  
Steven A. Balbus

AbstractA long-standing problem in the theory of astrophysical accretion disks has been to determine the nature of the stress that transports orbital angular momentum outward. The discovery of a local MHD instability is strong evidence that transport occurs through turbulent Maxwell and Reynolds stresses. Using numerical simulations, we have demonstrated that a weak seed magnetic field in an accretion disk shear flow is unstable and leads to sustained MHD turbulence at dynamically important levels.


2017 ◽  
Vol 24 (2) ◽  
pp. 022304 ◽  
Author(s):  
Sita Sundar ◽  
Mahendra K. Verma ◽  
Alexandros Alexakis ◽  
Anando G. Chatterjee

2008 ◽  
Vol 26 (7) ◽  
pp. 1889-1895 ◽  
Author(s):  
G. Li ◽  
E. Lee ◽  
G. Parks

Abstract. Recent studies of solar wind MHD turbulence show that current-sheet-like structures are common in the solar wind and they are a significant source of solar wind MHD turbulence intermittency. While numerical simulations have suggested that such structures can arise from non-linear interactions of MHD turbulence, a recent study by Borovsky (2006), upon analyzing one year worth of ACE data, suggests that these structures may represent the magnetic walls of flux tubes that separate solar wind plasma into distinct bundles and these flux tubes are relic structures originating from boundaries of supergranules on the surface of the Sun. In this work, we examine whether there are such structures in the Earth's magnetotail, an environment vastly different from the solar wind. We use high time resolution magnetic field data of the FGM instrument onboard Cluster C1 spacecraft. The orbits of Cluster traverse through both the solar wind and the Earth's magnetosheath and magnetotail. This makes its dataset ideal for studying differences between solar wind MHD turbulence and that inside the Earth's magnetosphere. For comparison, we also perform the same analysis when Cluster C1 is in the solar wind. Using a data analysis procedure first introduced in Li (2007, 2008), we find that current-sheet-like structures can be clearly identified in the solar wind. However, similar structures do not exist inside the Earth's magnetotail. This result can be naturally explained if these structures have a solar origin as proposed by Borovsky (2006). With such a scenario, current analysis of solar wind MHD turbulence needs to be improved to include the effects due to these curent-sheet-like structures.


2022 ◽  
Vol 924 (2) ◽  
pp. 53
Author(s):  
M. Terres ◽  
Gang Li

Abstract At scales much larger than the ion inertial scale and the gyroradius of thermal protons, the magnetohydrodynamic (MHD) theory is well equipped to describe the nature of solar wind turbulence. The turbulent spectrum itself is defined by a power law manifesting the energy cascading process. A break in the turbulence spectrum develops near-ion scales, signaling the onset of energy dissipation. The exact mechanism for the spectral break is still a matter of debate. In this work, we use the 20 Hz Mercury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER) magnetic field data during four planetary flybys at different heliocentric distances to examine the nature of the spectral break in the solar wind. We relate the spectral break frequencies of the solar wind MHD turbulence, found in the range of 0.3–0.7 Hz, with the well-known characteristic spectral bump at frequencies ∼1 Hz upstream of planetary bow shocks. Spectral breaks and spectral bumps during three planetary flybys are identified from the MESSENGER observations, with heliocentric distances in the range of 0.3–0.7 au. The MESSENGER observations are complemented by one Magnetospheric Multiscale observation made at 1 au. We find that the ratio of the spectral bump frequency to the spectral break frequency appears to be r- and B-independent. From this, we postulate that the wavenumber of the spectral break and the frequency of the spectral bump have the same dependence on the magnetic field strength ∣B∣. The implication of our work on the nature of the break scale is discussed.


Sign in / Sign up

Export Citation Format

Share Document