The Influence of Fin Rigidity and Gusts on the Force Production in Fishes and Insects: A Computational Study

Author(s):  
Ravi Ramamurti ◽  
William Sandberg ◽  
Rainald Löhner
2019 ◽  
Vol 1 (1) ◽  
Author(s):  
S M Cox ◽  
K L Easton ◽  
M Cromie Lear ◽  
R L Marsh ◽  
S L Delp ◽  
...  

Synopsis A muscle’s performance is influenced by where it operates on its force–length (F–L) curve. Here we explore how activation and tendon compliance interact to influence muscle operating lengths and force-generating capacity. To study this, we built a musculoskeletal model of the lower limb of the guinea fowl and simulated the F–L operating range during fixed-end fixed-posture contractions for 39 actuators under thousands of combinations of activation and posture using three different muscle models: Muscles with non-compliant tendons, muscles with compliant tendons but no activation-dependent shift in optimal fiber length (L0), and muscles with both compliant tendons and activation-dependent shifts in L0. We found that activation-dependent effects altered muscle fiber lengths up to 40% and increased or decreased force capacity by up to 50% during fixed-end contractions. Typically, activation-compliance effects reduce muscle force and are dominated by the effects of tendon compliance at high activations. At low activation, however, activation-dependent shifts in L0 are equally important and can result in relative force changes for low compliance muscles of up to 60%. There are regions of the F–L curve in which muscles are most sensitive to compliance and there are troughs of influence where these factors have little effect. These regions are hard to predict, though, because the magnitude and location of these areas of high and low sensitivity shift with compliance level. In this study we provide a map for when these effects will meaningfully influence force capacity and an example of their contributions to force production during a static task, namely standing.


2021 ◽  
Vol 18 (183) ◽  
Author(s):  
Thomas Engels ◽  
Dmitry Kolomenskiy ◽  
Fritz-Olaf Lehmann

Insect wings are hybrid structures that are typically composed of veins and solid membranes. In some of the smallest flying insects, however, the wing membrane is replaced by hair-like bristles attached to a solid root. Bristles and membranous wing surfaces coexist in small but not in large insect species. There is no satisfying explanation for this finding as aerodynamic force production is always smaller in bristled than solid wings. This computational study suggests that the diversity of wing structure in small insects results from aerodynamic efficiency rather than from the requirements to produce elevated forces for flight. The tested wings vary from fully membranous to sparsely bristled and were flapped around a wing root with lift- and drag-based wing kinematic patterns and at different Reynolds numbers ( Re ). The results show that the decrease in aerodynamic efficiency with decreasing surface solidity is significantly smaller at Re = 4 than Re = 57. A replacement of wing membrane by bristles thus causes less change in energetic costs for flight in small compared to large insects. As a consequence, small insects may fly with bristled and solid wing surfaces at similar efficacy, while larger insects must use membranous wings for an efficient production of flight forces. The above findings are significant for the biological fitness and dispersal of insects that fly at elevated energy expenditures.


Sign in / Sign up

Export Citation Format

Share Document