On Modelling the Acoustic Forcing Functions of the Near-Field Noise of High-Speed Jets

Author(s):  
Marcus Harper-Bourne
Author(s):  
Dean Long ◽  
Steven Martens

Model scale tests are conducted to assess the Noise/Performance trade for high speed jet noise reduction technologies. It is demonstrated that measuring the near field acoustic signature with a microphone array can be used to assess the far field noise using a procedure known as acoustic holography. The near field noise measurement is mathematically propagated producing an estimate of the noise level at the new location. Outward propagation produces an estimate of the far field noise. Propagation toward the jet axis produces the source distribution. Tests are conducted on convergent/divergent nozzles with three different area ratios, and several different chevron geometries. Noise is characterized by two independent processes: Shock cell noise radiating in the forward quadrant is produced when the nozzle is operated at non-ideally expanded conditions. Mach wave radiation propagates into the aft quadrant when the exhaust temperature is elevated. These results show good agreement with actual far field measurements from tests in the GE Cell 41 Acoustic Test Facility. Simultaneous performance measurement shows the change in thrust coefficient for different test conditions and configurations. Chevrons attached to the nozzle exit can reduce the noise by several dB at the expense of a minimal thrust loss.


Author(s):  
Dean Long ◽  
Steve Martens

Part I of this paper describes a methodology for assessing the far field jet noise from high speed exhaust nozzles using a microphone array in the near field of the exhaust plume. The near field noise measurement is mathematically propagated producing an estimate of the noise level at the new location. Outward propagation produces an estimate of the far field noise. Propagation toward the jet axis produces the source distribution. Part II described here provides a direct validation of this process using a generic CD nozzle in a facility where both the near field and the far field are measured simultaneously. Comparison of these data sets show good agreement over the typical operating range for this type of nozzle. The far field noise is characterized by two independent processes: Shock cell noise radiating in the forward quadrant is produced when the nozzle is operated at non-ideally expanded conditions. Mach wave radiation propagates into the aft quadrant when the exhaust temperature is elevated. Subsequent tests in an acoustically treated nozzle thrust stand demonstrate the value of the near field array allowing immediate feedback on the noise/performance tradeoff for high speed jet noise reduction technologies.


Author(s):  
Clifford A. Brown

Many configurations proposed for the next generation of aircraft rely on the wing or other aircraft surfaces to shield the engine noise from the observers on the ground. However, the ability to predict the shielding effect and any new noise sources that arise from the high-speed jet flow interacting with a hard surface is currently limited. Furthermore, quality experimental data from jets with surfaces nearby suitable for developing and validating noise prediction methods are usually tied to a particular vehicle concept and, therefore, very complicated. The Jet-Surface Interaction Tests are intended to supply a high quality set of data covering a wide range of surface geometries and positions and jet flows to researchers developing aircraft noise prediction tools. The initial goal is to measure the noise of a jet near a simple planar surface while varying the surface length and location in order to: (1) validate noise prediction schemes when the surface is acting only as a jet noise shield and when the jet-surface interaction is creating additional noise, and (2) determine regions of interest for future, more detailed, tests. To meet these objectives, a flat plate was mounted on a two-axis traverse in two distinct configurations: (1) as a shield between the jet and the observer and (2) as a reflecting surface on the opposite side of the jet from the observer. The surface length was varied between 2 and 20 jet diameters downstream of the nozzle exit. Similarly, the radial distance from the jet centerline to the surface face was varied between 1 and 16 jet diameters. Far-field and phased array noise data were acquired at each combination of surface length and radial location using two nozzles operating at jet exit conditions across several flow regimes: subsonic cold, subsonic hot, underexpanded, ideally expanded, and overexpanded supersonic. The far-field noise results, discussed here, show where the jet noise is partially shielded by the surface and where jet-surface interaction noise dominates the low frequency spectrum as a surface extends downstream and approaches the jet plume.


Sign in / Sign up

Export Citation Format

Share Document