Efficient Sampling and Support Vector Regression for Multidisciplinary Design Optimization of Multistage Space Launch Vehicle

Author(s):  
Mateen-ud-Din Qazi ◽  
He Linshu ◽  
Permoon Mateen
Author(s):  
Dongqin Li ◽  
Yifeng Guan ◽  
Qingfeng Wang ◽  
Zhitong Chen

The design of ship is related to several disciplines such as hydrostatic, resistance, propulsion and economic. The traditional design process of ship only involves independent design optimization within each discipline. With such an approach, there is no guarantee to achieve the optimum design. And at the same time improving the efficiency of ship optimization is also crucial for modem ship design. In this paper, an introduction of both the traditional ship design process and the fundamentals of Multidisciplinary Design Optimization (MDO) theory are presented and a comparison between the two methods is carried out. As one of the most frequently applied MDO methods, Collaborative Optimization (CO) promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, Design Of Experiment (DOE) and a new support vector regression algorithm are applied to CO to construct statistical approximation model in this paper. The support vector regression algorithm approximates the optimization model and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method. Then this new Collaborative Optimization (CO) method using approximate technology is discussed in detail and applied in ship design which considers hydrostatic, propulsion, weight and volume, performance and cost. It indicates that CO method combined with approximate technology can effectively solve complex engineering design optimization problem. Finally, some suggestions on the future improvements are proposed.


2017 ◽  
Vol 26 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Loïc Brevault ◽  
Mathieu Balesdent ◽  
Sébastien Defoort

The design of complex systems such as launch vehicles involves different fields of expertise that are interconnected. To perform multidisciplinary studies, concurrent engineering aims at providing a collaborative environment which often relies on data set exchange. In order to efficiently achieve system-level analyses (uncertainty propagation, sensitivity analysis, optimization, etc.), it is necessary to go beyond data set exchange which limits the capabilities of performance assessments. Multidisciplinary design optimization methodologies is a collection of engineering methodologies to optimize systems modelled as a set of coupled disciplinary analyses and is a key enabler to extend concurrent engineering capabilities. This article is focused on several examples of recent developments of multidisciplinary design optimization methodologies (e.g. multidisciplinary design optimization with transversal decomposition of the design process, multidisciplinary design optimization under uncertainty) with applications to launch vehicle design to illustrate the benefices of taking into account the coupling effects between the different physics all along the design process. These methods enable to manage the complexity of the involved physical phenomena and their interactions in order to generate innovative concepts such as reusable launch vehicles beyond existing solutions.


Sign in / Sign up

Export Citation Format

Share Document