scholarly journals Numerical Simulations of Supersonic Flow in a Linear Aerospike Micro Nozzle

Author(s):  
Adis Zilic ◽  
Darren Hitt ◽  
Alina Alexeenko
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
HaiLong Zhao ◽  
Ke Peng ◽  
ZePing Wu ◽  
WeiHua Zhang ◽  
JiaWei Yang ◽  
...  

Drag reduction is one of the important problems for the supersonic vehicles. As one of the drag reduction methods, aerospike has been used in some equipment because of its good drag reduction effect. In this paper, the numerical simulations of Carman curve bodies with different lengths of the aerospike and different radius of the flat cylindrical aerodisk in supersonic flow freestream are investigated. Based on the numerical simulations, the mechanism of drag reduction of the aerospike is discussed. The drag reduction effect influence of the parameters of the aerodisk radius and the aerospike length on the Carman curve body is analyzed. The aerodisk radius within a certain range is helpful for the drag reduction. The change of length of the aerospike has little effect on the drag of Carmen curve bodies. The drag reduction effect of the same aerospike becomes worse with the increase of the incoming Mach number.


2021 ◽  
Vol 16 ◽  
pp. 153-158
Author(s):  
S. J. Karabelas ◽  
N.C. Markatos

The purpose of this research work is to perform accurate numerical computations of supersonic flow in a converging nozzle and specifically to study Mach-disks. The latter process has been widely studied over the last years. In the present study numerical simulations are performed for transient supersonic flow, tracing the transition from a Mach reflection to a regular one. This has been done by enforcing the walls of a converging nozzle to come closer together, changing the deflection angle with time. Viscosity was taken into account and the full Navier- Stokes have been solved. The results obtained clearly show the gradual extinction of the Mach disk and the eventual wave intersection to a single point


2008 ◽  
Vol 22 (6) ◽  
pp. 1174-1180 ◽  
Author(s):  
Sungcho Kim ◽  
Jeong Soo Kim ◽  
Jongwook Choi ◽  
Jeong Park ◽  
Soon Duk Kwon

Author(s):  
Farhad Davoudzadeh ◽  
Nan-Suey Liu

Reynolds-Averaged Navier-stokes (RANS) numerical simulations are performed to predict the supersonic flow field induced by a H2-O2 rocket thruster with an attached panel, under a variety of operating conditions. The simulations have captured physical details of the flow field, such as the plume formation and expansion, formation of a system of shock waves and their effects on the temperature and pressure distributions on the walls. Comparison between the computed results for 2-D and adiabatic walls and the related experimental measurements for 3-D and cooled walls shows that the results of the simulations are consistent with those obtained from the related rig tests.


2019 ◽  
Vol 867 ◽  
pp. 611-632 ◽  
Author(s):  
Anatoly A. Maslov ◽  
S. G. Mironov ◽  
T. V. Poplavskaya ◽  
S. V. Kirilovskiy

Results of experimental and numerical investigations of a supersonic flow around a cylinder with a frontal gas-permeable insert made of a high-porosity cellular material are presented. The measurements are performed in a T-327 supersonic blowdown wind tunnel at the free-stream Mach numbers $M_{\infty }=4.85$, 7 and 21 in the range of the unit Reynolds numbers $Re_{1\infty }=(0.6{-}13.5)\times 10^{6}~\text{m}^{-1}$. The drag coefficients for a cylinder with an aerospike and a cylinder with a frontal gas-permeable porous insert are obtained. For the cylinder with the frontal gas-permeable porous insert, variations of the insert length, cylinder diameter and pore size are considered, and the mechanism of drag reduction is found, which includes two supplementary processes: attenuation of the bow shock wave in a system of weaker shock waves, and formation of an effective pointed body. The experiments are accompanied by numerical simulations of the flow around the cylinder with the frontal high-porosity insert: the fields of parameters of the external flow and the flow inside the porous insert are obtained, the drag coefficients are calculated, and the shape of the effective body for the examined model is found. The structure of the high-porosity material is modelled by a system of staggered rings of different diameters aligned in the radial and longitudinal directions (skeleton model of a porous medium). Numerical simulations of the problem are performed by means of solving two-dimensional Reynolds-averaged Navier–Stokes equations written in an axisymmetric form. The experimental and numerical data reveal significant drag reduction in a wide range of supersonic flow conditions. The results obtained on the drag coefficient for the cylinder are generalized with the use of a parameter which includes the ratio of the cylinder diameter to the pore diameter in the insert and the Mach number. This parameter is proposed as a similarity criterion for the problem of a supersonic flow around a cylinder with a frontal high-porosity insert.


Sign in / Sign up

Export Citation Format

Share Document