Supersonic flow around a cylinder with a permeable high-porosity insert: experiment and numerical simulation

2019 ◽  
Vol 867 ◽  
pp. 611-632 ◽  
Author(s):  
Anatoly A. Maslov ◽  
S. G. Mironov ◽  
T. V. Poplavskaya ◽  
S. V. Kirilovskiy

Results of experimental and numerical investigations of a supersonic flow around a cylinder with a frontal gas-permeable insert made of a high-porosity cellular material are presented. The measurements are performed in a T-327 supersonic blowdown wind tunnel at the free-stream Mach numbers $M_{\infty }=4.85$, 7 and 21 in the range of the unit Reynolds numbers $Re_{1\infty }=(0.6{-}13.5)\times 10^{6}~\text{m}^{-1}$. The drag coefficients for a cylinder with an aerospike and a cylinder with a frontal gas-permeable porous insert are obtained. For the cylinder with the frontal gas-permeable porous insert, variations of the insert length, cylinder diameter and pore size are considered, and the mechanism of drag reduction is found, which includes two supplementary processes: attenuation of the bow shock wave in a system of weaker shock waves, and formation of an effective pointed body. The experiments are accompanied by numerical simulations of the flow around the cylinder with the frontal high-porosity insert: the fields of parameters of the external flow and the flow inside the porous insert are obtained, the drag coefficients are calculated, and the shape of the effective body for the examined model is found. The structure of the high-porosity material is modelled by a system of staggered rings of different diameters aligned in the radial and longitudinal directions (skeleton model of a porous medium). Numerical simulations of the problem are performed by means of solving two-dimensional Reynolds-averaged Navier–Stokes equations written in an axisymmetric form. The experimental and numerical data reveal significant drag reduction in a wide range of supersonic flow conditions. The results obtained on the drag coefficient for the cylinder are generalized with the use of a parameter which includes the ratio of the cylinder diameter to the pore diameter in the insert and the Mach number. This parameter is proposed as a similarity criterion for the problem of a supersonic flow around a cylinder with a frontal high-porosity insert.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
HaiLong Zhao ◽  
Ke Peng ◽  
ZePing Wu ◽  
WeiHua Zhang ◽  
JiaWei Yang ◽  
...  

Drag reduction is one of the important problems for the supersonic vehicles. As one of the drag reduction methods, aerospike has been used in some equipment because of its good drag reduction effect. In this paper, the numerical simulations of Carman curve bodies with different lengths of the aerospike and different radius of the flat cylindrical aerodisk in supersonic flow freestream are investigated. Based on the numerical simulations, the mechanism of drag reduction of the aerospike is discussed. The drag reduction effect influence of the parameters of the aerodisk radius and the aerospike length on the Carman curve body is analyzed. The aerodisk radius within a certain range is helpful for the drag reduction. The change of length of the aerospike has little effect on the drag of Carmen curve bodies. The drag reduction effect of the same aerospike becomes worse with the increase of the incoming Mach number.


2015 ◽  
Vol 56 (4) ◽  
pp. 549-557 ◽  
Author(s):  
S. G. Mironov ◽  
A. A. Maslov ◽  
T. V. Poplavskaya ◽  
S. V. Kirilovskiy

2015 ◽  
Vol 783 ◽  
pp. 448-473 ◽  
Author(s):  
J. Seo ◽  
R. García-Mayoral ◽  
A. Mani

Superhydrophobic surfaces can entrap gas pockets within their grooves when submerged in water. Such a mixed-phase boundary is shown to result in an effective slip velocity on the surface, and has promising potential for drag reduction and energy-saving in hydrodynamic applications. The target flow regime, in most such applications, is a turbulent flow. Previous analyses of this problem involved direct numerical simulations of turbulence with the superhydrophobic surface modelled as a flat boundary, but with a heterogeneous mix of slip and no-slip boundary conditions corresponding to the surface texture. Analysis of the kinematic data from these simulations has helped to establish the magnitude of drag reduction for various texture topologies. The present work is the first investigation that, alongside a kinematic investigation, addresses the robustness of superhydrophobic surfaces by studying the load fields obtain from data from direct numerical simulations (DNS). The key questions at the focus of this work are: does a superhydrophobic surface induce a different pressure field compared to a flat surface? If so, how does this difference scale with system parameters, and when does it become significant that it can deform the air–water interface and potentially rapture the entrapped gas pockets? To this end, we have performed DNS of turbulent channel flows subject to superhydrophobic surfaces over a wide range of texture sizes spanning values from $L^{+}=6$ to $L^{+}=155$ when expressed in terms of viscous units. The pressure statistics at the wall are decomposed into two contributions: one coherent, caused by the stagnation of slipping flow hitting solid posts, and one time-dependent, caused by overlying turbulence. The results show that the larger texture size intensifies the contribution of stagnation pressure, while the contribution from turbulence is essentially insensitive to $L^{+}$. The two-dimensional stagnation pressure distribution at the wall and the pressure statistics in the wall-normal direction are found to be self-similar for different $L^{+}$. The scaling of the induced pressure and the consequent deformations of the air–water interface are analysed. Based on our results, an upper bound on the texture wavelength is quantified that limits the range of robust operation of superhydrophobic surfaces when exposed to high-speed flows. Our results indicate that when the system parameters are expressed in terms of viscous units, the main parameters controlling the problem are $L^{+}$ and a Weber number based on inner dimensions; We obtain good collapse when all our results are expressed in wall units, independently of the Reynolds number.


Author(s):  
E. Thilliez ◽  
S. T. Maddison

AbstractNumerical simulations are a crucial tool to understand the relationship between debris discs and planetary companions. As debris disc observations are now reaching unprecedented levels of precision over a wide range of wavelengths, an appropriate level of accuracy and consistency is required in numerical simulations to confidently interpret this new generation of observations. However, simulations throughout the literature have been conducted with various initial conditions often with little or no justification. In this paper, we aim to study the dependence on the initial conditions of N-body simulations modelling the interaction between a massive and eccentric planet on an exterior debris disc. To achieve this, we first classify three broad approaches used in the literature and provide some physical context for when each category should be used. We then run a series of N-body simulations, that include radiation forces acting on small grains, with varying initial conditions across the three categories. We test the influence of the initial parent body belt width, eccentricity, and alignment with the planet on the resulting debris disc structure and compare the final peak emission location, disc width and offset of synthetic disc images produced with a radiative transfer code. We also track the evolution of the forced eccentricity of the dust grains induced by the planet, as well as resonance dust trapping. We find that an initially broad parent body belt always results in a broader debris disc than an initially narrow parent body belt. While simulations with a parent body belt with low initial eccentricity (e ~ 0) and high initial eccentricity (0 < e < 0.3) resulted in similar broad discs, we find that purely secular forced initial conditions, where the initial disc eccentricity is set to the forced value and the disc is aligned with the planet, always result in a narrower disc. We conclude that broad debris discs can be modelled by using either a dynamically cold or dynamically warm parent belt, while in contrast eccentric narrow debris rings are reproduced using a secularly forced parent body belt.


Author(s):  
M. V. Pham ◽  
F. Plourde ◽  
S. K. Doan

Heat transfer enhancement is a subject of major concern in numerous fields of industry and research. Having received undivided attention over the years, it is still studied worldwide. Given the exponential growth of computing power, large-scale numerical simulations are growing steadily more realistic, and it is now possible to obtain accurate time-dependent solutions with far fewer preliminary assumptions about the problems. As a result, an increasingly wide range of physics is now open for exploration. More specifically, it is time to take full advantage of large eddy simulation technique so as to describe heat transfer in staggered parallel-plate flows. In fact, from simple theory through experimental results, it has been demonstrated that surface interruption enhances heat transfer. Staggered parallel-plate geometries are of great potential interest, and yet many numerical works dedicated to them have been tarnished by excessively simple assumptions. That is to say, numerical simulations have generally hypothesized lengthwise periodicity, even though flows are not periodic; moreover, the LES technique has not been employed with sufficient frequency. Actually, our primary objective is to analyze turbulent influence with regard to heat transfers in staggered parallel-plate fin geometries. In order to do so, we have developed a LES code, and numerical results are compared with regard to several grid mesh resolutions. We have focused mainly upon identification of turbulent structures and their role in heat transfer enhancement. Another key point involves the distinct roles of boundary restart and the vortex shedding mechanism on heat transfer and friction factor.


1998 ◽  
Vol 550 ◽  
Author(s):  
V.P. Shastri ◽  
I. Martin ◽  
R. Langer

AbstractPorous polymeric media are used in several applications such as solid supports for separations and catalysis, as well as biomedical applications such as vascular grafts and wound dressings. We have developed a novel versatile process to produce polymeric cellular solids. This process which is based on a phase extraction-co-polymer precipitation is applicable to a wide range of polymer systems including water soluble polymers. It is capable of yielding polymer foams of high porosity (> 90%) and excellent mechanical characteristics in a very short time (less than 2 hours) without limitations in foam thickness. Polymer foam with such characteristics have great utility in tissue engineering applications. We have successfully explored polymer foams of biocompatible polymers produced by the presented approach for bone and cartilage engineering using bone marrow stromal cells.


2021 ◽  
Author(s):  
Guillaume Chambon ◽  
Thierry Faug ◽  
Mohamed Naaim

&lt;p&gt;Wet snow avalanches present distinctive features such as unusual trajectories, peculiar deposit shapes, and a rheological behavior displaying a combination of granular and pasty features depending on the actual snow liquid water content. Complex transitions between dry (cold) and wet (hot) flow regimes can also occur during a single avalanche flow. In an attempt to account for this complexity, we report on numerical simulations of avalanches using a frictional-cohesive rheology implemented in a depth-averaged shallow-flow model. Through extensive sensitivity studies on synthetic and real topographies, we show that cohesion plays a key role to enrich the physics of the simulated flows, and to represent realistic avalanche behaviors. First, when coupled to a proper treatment of the yielding criterion, cohesion provides a way to define objective stopping criteria for the flow, independently of the issues incurred by artificial diffusion of the numerical scheme. Second, and more importantly, the interplay between cohesion and friction gives raise to a variety of nontrivial physical effects affecting the dynamics of the avalanches and the morphology of the deposits. The relative weights of frictional and cohesive contributions to the overall stress are investigated as a function of space and time during the propagation, and related to the formation of specific features such as lateral lev&amp;#233;es, hydraulic jumps, etc. This study represents a first step towards robust avalanches simulations, spanning the wide range of possible flow regimes, through shallow-flow approaches. Future improvements involving more refined cohesion parameterizations will be discussed.&lt;/p&gt;


2004 ◽  
Vol 126 (3) ◽  
pp. 473-481 ◽  
Author(s):  
B. Jacod ◽  
C. H. Venner ◽  
P. M. Lugt

The effect of longitudinal roughness on the friction in EHL contacts is investigated by means of numerical simulations. In the theoretical model the Eyring equation is used to describe the rheological behavior of the lubricant. First the relative friction variation caused by a single harmonic roughness component is computed as a function of the amplitude and wavelength for a wide range of operating conditions. From the results a curve fit formula is derived for the relative friction variation as a function of the out-of-contact geometry of the waviness and a newly derived parameter characterizing the response of the lubricant to pressure variations. Subsequently, the case of a superposition of two harmonic components is considered. It is shown that for the effect on friction such a combined pattern can be represented by a single equivalent wave. The amplitude and the wavelength of the equivalent wave can be determined from a nonlinear relation in terms of the amplitudes and wavelengths of the individual harmonic components. Finally the approach is applied to the prediction of the effect of a real roughness profile (many components) on the friction. From a comparison of the results with full numerical simulations it appears that the simplified approach is quite accurate.


Sign in / Sign up

Export Citation Format

Share Document