Sea-Level Static Tests of a Rocket-Ramjet Combined Cycle Engine Model

Author(s):  
Sadatake Tomioka ◽  
Tetsuo Hiraiwa ◽  
Shuuichi Ueda ◽  
Kohichiro Tani ◽  
Noboru Sakuranaka ◽  
...  
2020 ◽  
pp. 1-10
Author(s):  
Sadatake Tomioka ◽  
Masao Takegoshi ◽  
Toshinori Kochi ◽  
Kanenori Kato ◽  
Toshihito Saito ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Gabriel Valencia-Ortega ◽  
Sergio Levario-Medina ◽  
Marco Antonio Barranco-Jiménez

Abstract The proposal of models that account for the irreversibilities within the core engine has been the topic of interest to quantify the useful energy available during its conversion. In this work, we analyze the energetic optimization and stability (local and global) of three power plants, nuclear, combined-cycle, and simple-cycle ones, by means of the Curzon–Ahlborn heat engine model which considers a linear heat transfer law. The internal irreversibilities of the working fluid measured through the r-parameter are associated with the so-called “uncompensated Clausius heat.” In addition, the generalization of the ecological function is used to find operating conditions in three different zones, which allows to carry out a numerical analysis focused on the stability of power plants in each operation zone. We noted that not all power plants reveal stability in all the operation zones when irreversibilities are considered through the r-parameter on real-world power plants. However, an improved stability is shown in the zone limited by the maximum power output and maximum efficiency regimes.


Author(s):  
Masao Takegoshi ◽  
Sadatake Tomioka ◽  
Masatoshi Kodera ◽  
Susumu Hasegawa ◽  
Kanenori Kato ◽  
...  

Author(s):  
Sadatake Tomioka ◽  
Kanenori Kato ◽  
Kouichiro Tani ◽  
Susumu Hasegawa ◽  
Masatoshi Kodera ◽  
...  
Keyword(s):  

2020 ◽  
Vol 45 (3) ◽  
pp. 269-290 ◽  
Author(s):  
Sergio Levario-Medina ◽  
Gabriel Valencia-Ortega ◽  
Marco Antonio Barranco-Jiménez

AbstractThe fundamental issue in the energetic performance of power plants, working both as traditional fuel engines and as combined-cycle turbines (gas-steam), lies in quantifying the internal irreversibilities which are associated with the working substance operating in cycles. The purpose of several irreversible energy converter models is to find objective thermodynamic functions that determine operation modes for real thermal engines and at the same time study the trade-off between energy losses per cycle and the useful energy. As those objective functions, we focus our attention on a generalization of the so-called ecological function in terms of an ϵ parameter that depends on the particular heat transfer law used in the irreversible heat engine model. In this work, we mathematically describe the configuration space of an irreversible Curzon–Ahlborn type model. The above allows to determine the optimal relations between the model parameters so that a power plant operates in physically accessible regions, taking into account internal irreversibilities, introduced in two different ways (additively and multiplicatively). In addition, we establish the conditions that the ϵ parameter must fulfill for the energy converter to work in an optimal region between maximum power output and maximum efficiency points.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yuan Gao ◽  
Zhihua Xi ◽  
Chenxu Hu ◽  
Haibo Zhang

AbstractThe over-under turbine based combined cycle (TBCC) propulsion system dynamic model is established, including the engine model and inlet model. A dual-channel inlet is designed to match the engine and the inlet performance parameters are obtained by computational fluid dynamics (CFD) calculation, which provides original data for the integrated Inlet/Engine matching model. Control plan is designed to ensure that the engine is not over-temperature, over-rotation or surging based on correlation analysis. The simulation results show that the designed control plan can keep the TBCC propulsion system continuous in thrust during the mode transition, and the thrust fluctuation is about 10%.


Author(s):  
Sadatake Tomioka ◽  
Masao Takegoshi ◽  
Kenji Kudo ◽  
Kanenori Kato ◽  
Susumu Hasegawa ◽  
...  

1975 ◽  
Vol 26 ◽  
pp. 395-407
Author(s):  
S. Henriksen

The first question to be answered, in seeking coordinate systems for geodynamics, is: what is geodynamics? The answer is, of course, that geodynamics is that part of geophysics which is concerned with movements of the Earth, as opposed to geostatics which is the physics of the stationary Earth. But as far as we know, there is no stationary Earth – epur sic monere. So geodynamics is actually coextensive with geophysics, and coordinate systems suitable for the one should be suitable for the other. At the present time, there are not many coordinate systems, if any, that can be identified with a static Earth. Certainly the only coordinate of aeronomic (atmospheric) interest is the height, and this is usually either as geodynamic height or as pressure. In oceanology, the most important coordinate is depth, and this, like heights in the atmosphere, is expressed as metric depth from mean sea level, as geodynamic depth, or as pressure. Only for the earth do we find “static” systems in use, ana even here there is real question as to whether the systems are dynamic or static. So it would seem that our answer to the question, of what kind, of coordinate systems are we seeking, must be that we are looking for the same systems as are used in geophysics, and these systems are dynamic in nature already – that is, their definition involvestime.


Sign in / Sign up

Export Citation Format

Share Document